(define English2cow (lambda (L)
 (if (empty? L)
 empty
 (cons (quote moo) (English2cow (rest L))))))
(define double
 (lambda (L)
 (cond
 ((empty? L) empty)
 (#true
 (cons (car L) (cons (car L) (double (cdr L))))))))
(define parity
 (lambda (n)
 (cond
 ((zero? n) (quote even))
 ((equal? (parity (- n 1)) (quote even)) (quote odd))
 ((equal? (parity (- n 1)) (quote odd)) (quote even))))
my-even?

(define my-even?
 (lambda (n)
 (cond
 ((equal? n 0) #true)
 (#true (not (my-even? (- n 1)))))))
Theorem: For any numbers \(a \) and \(b \), if

\[
\begin{align*}
 f(0) &= a \\
 f(n) &= b + f(n-1) \text{ for } n > 0
\end{align*}
\]

Then \(f(n) = a + bn \).

Proof: by induction on \(n \).

Base case: \(n=0 \). In this case, we are given \(f(0) = a \) (Equation 1), which is what the theorem states in this case.

Induction step: Assume the theorem is true for \(n=k-1 \). That is, \(f(k-1) = a + b \cdot (k-1) \).

Using Equation 2,

\[
 f(k) = b + f(k-1)
\]

Substituting, we get

\[
 f(k) = a + b + b \cdot (k-1)
\]

Which implies

\[
 f(k) = a + bk
\]

This completes the induction step. QED