(Provisional) Lecture 29: Limits of Computation
10:00 AM, Nov 13, 2017

Contents

1 Why use Modules? 1

2 The Domain of Parse 1

3 Limits on computation 2

- 3.1 Decision Problems ... 2
- 3.2 Classes of Problems ... 2
- 3.3 Halting ... 3

4 Connecting with the Real World 4

5 Summary 5

Objectives

By the end of this lecture, you will know:

- Understand the usefulness of modules
- Understanding that there are limits to computation
- Exploring classes of problems P and NP
- Proving the Halting Problem
- See some useful functions to navigate the file system

1 Why use Modules?

Suppose we have a whole bunch of code that uses stacks to perform some complex function. In our stack code, say we have a procedure mysort. As the program gets bigger, we encounter another place where sorting necessary for some other type of data. If we name our procedure mysort again, the new mysort will hide the first one.

Now if we had used a module to implement our stack, including the mysort procedure, its name would be stack.mysort, and it will not be hidden by any future procedures named mysort.
Modules also significantly increase the clarity of a program by gathering together related pieces of code.

Procedures having the same name is actually a big problem. This had lead to the idea of *namespaces*, which are regions of the program visible to other parts, and *data hiding*, which is exposing only a tiny fraction of code to external entities. Input and Output types are really all the user needs to know about your program, and not the actual implementation details.

2 The Domain of Parse

A couple clarifications of the domain of parse in your Rackette program:

Parse should convert *any* Rackette program into an abstract program. It does not need to be valid. Some programs are parseable and produce abstract programs, while others generate errors.

This error generation is part of your required functionality. Since we have not specified the exact form of the error, everyone’s failwith will be different. Note that here, we are slightly violating the rule of having absolute substitutability between correct implementations, but only in the case of an error.

3 Limits on computation

An ideal computer would have infinite memory and time. Unfortunately, we don’t have ideal computers and thus have to be mindful of the runtime of our programs and how much space they require.

We earlier proved that comparison based sorting had to take time at least proportional to $n \log n$.

Subset-sum on the other hand seems to need at least 2^n time.

Why does subsets require exponential time whereas sorting is only $n \log n$? What is the difference between these problems? Are some computational problems inherently harder than others?

3.1 Decision Problems

Decision problems consume some input and produce a boolean output. For example the question `subset-sum` asks is:

Is there a subset of these weights that adds up to that total? Here, the inputs are the weights (1 2 8 3 5) and the total is 13. This seems to require 2^n time to solve.

However, if we want to *verify* whether a particular subset is in the solution to subset-sum, that is a different problem. The question `subset-sum-check` asks is:

Are these items a subset of weights that add up to the required total? Here, the inputs also include the purported subset (0 13).

How hard is this problem? There are two steps, first we need to check if the items really add up to the required target. Secondly, we need to check if the input is a valid subset, that is, checking if all the item are in the original set.
If the original list has length n, the first part is $O(n \rightarrow n)$ since we only need to go through the list once to add the items. In our example, $0 + 13 = 13$, which is the target, so we are good. Checking whether all the items are in the original set requires going through the set once for each item in our purported subset. Worst case, our subset is of length n, and so the second part is $O(n \rightarrow n^2)$. Here, it turns out neither 0 nor 13 are found after going through the list once for each. In total, our program is $O(n \rightarrow n^2)$, which we say is solvable in polynomial time.

3.2 Classes of Problems

Some decision problems are known to be solvable in polynomial time. The class of all such problems is called P. subset-sum does not appear to be in class P.

Some decision problems can be verified in polynomial time, like subset-sum-check above. These problems are said to be in NP.

A big unsolved question in Computer Science is: are there any problems in NP that are not in P? In other words, are there any problems that are easy to verify but hard to solve?

Many people think yes; that the fact that you can verify a problem easily does not necessarily mean you can find a solution equally easily, and the gap between P and NP is seemingly large.

However, no one has a proof either way. If you come up with one, it’s worth a million dollars!

3.3 Halting

David Hilbert, an early computer scientist believed that it can be proven that there exist no computational problems that we cannot solve, and that it is possible to build a machine that would give us a true or false answer for any decision problem.

What other questions can we ask about programs? We could ask whether a certain program uses a lot of memory, or whether a program correctly computes a desired value.

Another interesting question to ask is whether a program will terminate (or halt) on an idealized computer, or will it run forever? Take the following example of a broken procedure to computer length:

```lisp
(define (b-len alod)
  (cond
   [(empty? alod) 0]
   [(cons? alod) (+ 1 (b-len alod))]))
```

This program does not modify the recursive input to be smaller in any way, and thus will run forever.

Easier questions to ask regarding this would be: Does this program halt before it has performed 10,000 operations? Or does this program halt within 3 minutes? It is possible to answer these questions just by empirical observation.

Interesting things happen, however when we try to define a procedure that determines when given a procedure as an input, whether it will run forever.

```lisp
;; input: proc, a procedure, represented as a string
data, a datum that the procedure can consume, represented as a string
output: true if (proc data) terminates, false otherwise

(halt? proc data)

Assume that we have written halt. We have this idea of procedures consuming other procedures—\textemdash that is what your Rackette program did. If we wrote Rackette in Racket instead of OCaml, we could feed our Rackette source code to our Rackette procedure as input!

(define rackette-as-string "(define (evaluate exp) ... )")

We could then apply \texttt{halt?} to this procedure.

(halt? rackette-as-string rackette-as-string)

We can write a generalisation of this called \texttt{halts-on-self} to check for any program, whether it will halt when applied to itself.

(define (halts-on-self s)
 (halt? s s))

Now let us define some more procedures.

(define (loop) (loop)) ; this never halts!

(define (loop-if-halts-on-self s)
 (if (halts-on-self s)
 (loop)
 true))

The \texttt{loop-if-halts-on-self} procedure takes as input a program \texttt{s} (expressed, say, as a long string), and it uses \texttt{halts-on-self} to predict whether that procedure would terminate if given as input the program itself. If input program \texttt{s} would terminate, then \texttt{loop-if-halts-on-self} calls \texttt{loop}, and so our program never terminates. If \texttt{s} would not terminate, then our program just returns \texttt{true}.

Now imagine that we apply the \texttt{loop-if-halts-on-self} procedure to itself! To do so we can define \texttt{qs} to be the same program as a string.

(define qs "(define (loop-if-halts-on-self s) ... )")

Then we evaluate,

(loop-if-halts-on-self qs)

Does it halt? Let’s consider both possibilities:

1. Assume that it halts. That means that the if-condition evaluated to false. The if-condition called the \texttt{halts-on-self} procedure on \texttt{qs}, so the \texttt{halt?} procedure must have predicted that the \texttt{qs} program does not halt when given itself as input.
2. Assume that it does not halt. That means that the if-condition evaluated to true, so the \texttt{halt?} procedure must have predicted that the \texttt{qs} procedure halts when given itself as input.

If we assume that it halts, we can infer that it does not halt. That is a contradiction. If we assume that it does not halt, we can infer that it does halt, which is also a contradiction. What was our initial assumption? That it is possible to write the \texttt{halt?} program. We are forced to conclude that the \texttt{halt?} procedure cannot exist.

4 Connecting with the Real World

All of the programs we have written in CS17 are quite isolated from real world data. This is because real data is messy and hard to deal with. In Lecture, Spike talked about one such kind of real data-the filesystem, and some procedures that help us use and navigate though it. For a list of these procedures and input/output, please refer to the slides!

5 Summary

Ideas

- Modules make handling large code easier
- Some decision problems seemingly cannot be solved in polynomial time
- Even if verifying the solution of the problem can
- No one knows if there really is a distinction between the difficulty of these
- The Halting procedure is an example of a computationally impossible problem.

Skills

- Useful procedures to navigate the Linux file system to deal with real data