Objectives

By the end of this lecture, you will be able to:

- test the equality of sets of different types
- create procedures that take in multiple parameters
- rewrite some Racket procedures in OCaml
- define a lookup procedure for dictionaries in OCaml

1 Dictionaries

Dictionaries are a special type of data structure used in many different languages. You can think of a dictionary as a function, call it f. This function takes in a key and returns a value associated that key. Thus, you can also think of dictionaries as a set of key-value pairs.

You’ve encountered things resembling dictionaries before! A phone book, for example, can be thought of as a dictionary where names are the keys and phone numbers are the values associated with a certain key. An English-French dictionary has English words as its keys, and French words as the associated values. Even environments can be thought of as dictionaries from identifiers to values bound to those identifiers.

There are some typical operations associated with dictionaries:

- Is this key in the dictionary
- What value is associated with this key
- Add a key-value pair
- Replace a key-value pair
- Delete a key-value pair
Let's attempt to develop a lookup procedure that takes in a key and a dictionary, and returns the value associated with that key.

```ocaml
(* my_dict is an English to French dictionary *)
let rec lookup (key : string) (dict : (string * string) list) : string =
  match dict with
  | [] -> ???
  | (k, v) :: tl -> if (key == k) then v else (lookup key tl) ;;
```

But what happens if the key we are looking for is not in our dictionary? We'll need a way to tell the user that our lookup procedure did not find a value in our dictionary associated with the key they entered. Can we do better than outputting an error message in this case?

Options Options are a builtin type for handling success/failure cases!

```ocaml
(* The following defines a type 'a option *)
type 'a option = Some of 'a | None
```

The intended use of an option is to indicate that either what you were looking for was found, or not. If an answer was found, a procedure returning an option will return Some(x), where x is the answer you were looking for. If an answer was not found, the procedure will return None.

Having a procedure return an option instead of a value is helpful for dictionaries, where we aren't sure if a lookup procedure will have a non-existent key as an input. We can use options to remedy this issue! Keep in mind, though, that if options are used, a new type signature will be required for most functions. Notice how the type signature changes for our lookup procedure.

```ocaml
let rec lookup (key : string) (dict : (string * string) list) :
  string option =
  ...
```

Writing lookup using options is left as a task in Lab 7.

Here is an example of a procedure that makes use of options. Note the use of parentheses to wrap the value associated with a Some option. This is a good habit to get into.

```ocaml
let rec sum_but_ones = function
  | [] -> None
  | 1 :: tl -> sum_but_ones tl
  | hd :: tl -> (match sum_but_ones tl with
    | None -> Some (hd)
    | Some (s) -> Some (hd + s)) ;;
```
2 Well-Ordering Proof Practice

We did a couple of well-ordering proofs in class.

The first proof was to prove that if \(H : \mathbb{N} \rightarrow \mathbb{N} \) satisfies the recurrence

\[
H(0) = A \\
H(n) \leq B + H(n-1) \quad \text{for } n > 0
\]

then for every \(n \in \mathbb{N} \),

\[H(n) \leq Bn + A. \quad \text{(Eq 1)} \]

The statements we filled out together in class are in red

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Let (S = { n \in \mathbb{N} \mid \text{(Eq 1) is false for } n })</td>
<td>Definition of (S)</td>
</tr>
<tr>
<td>2 Suppose that (S) is nonempty</td>
<td>Contradiction hypothesis</td>
</tr>
<tr>
<td>3 Let (k) be the least element of (S)</td>
<td>Well-ordering</td>
</tr>
<tr>
<td>4 (Eq 1), for (n = 0), says that (H(0) \leq B \cdot 0 + A = A)</td>
<td>Restatement of (Eq 1).</td>
</tr>
<tr>
<td>5 (Eq 1), for (n = 0), is true</td>
<td>Line 1 of recurrence</td>
</tr>
<tr>
<td>6 (k \neq 0)</td>
<td>If it were, then (Eq 1) would not be true for (n = 0); S5.</td>
</tr>
<tr>
<td>7 (k > 0)</td>
<td>(k) is a natural number, and (k \neq 0) by S6.</td>
</tr>
<tr>
<td>8 (Eq 1) is true for (n = k - 1)</td>
<td>S1, S3, S7</td>
</tr>
<tr>
<td>9 (H(k-1) \leq B \cdot (k-1) + A)</td>
<td>Restatement of S8 with (k - 1) plugged in.</td>
</tr>
<tr>
<td>10 (H(k) \leq B + H(k-1))</td>
<td>Because (k > 0) (see S7) and line 2 of recurrence.</td>
</tr>
<tr>
<td>11 (H(k) \leq B + [B \cdot (k-1) + A])</td>
<td>S10, S9.</td>
</tr>
<tr>
<td>12 (H(k) \leq B + Bk - B + A)</td>
<td>S11, algebra.</td>
</tr>
<tr>
<td>13 (H(k) \leq Bk + A)</td>
<td>S12, algebra.</td>
</tr>
<tr>
<td>14 (k \notin S)</td>
<td>S13, definition of (S) in S1.</td>
</tr>
<tr>
<td>15 Contradiction</td>
<td>S14, S3. Hence S2 is false!</td>
</tr>
<tr>
<td>16 S2 is false, so (Eq 1) holds for all natural numbers</td>
<td>S2, S15.</td>
</tr>
</tbody>
</table>

Then, we worked on finding the upper bound for this recurrence.

Suppose \(H : \mathbb{N} \rightarrow \mathbb{N} \) satisfies the recurrence

\[
H(0) = A \\
H(n) \leq B + 2H(n-1) \quad \text{for } n > 0
\]

where \(A > 0, B > 0 \). Use plug-n-chug to find an upper-bound for \(H(k) \) for \(k \in \mathbb{N} \).

In class we worked to find this upper bound. A useful theorem we used in class is that for \(k \in \mathbb{N} \),

\[1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1. \]
\begin{align}
H(0) &= A \\
H(1) &\leq B + 2A \\
H(2) &\leq B + 2B + 4A \\
H(3) &\leq B + 2B + 4B + 8A \\
H(k) &\leq (2^k)A + (2^k - 1)B
\end{align}

Then we worked to fill out a second well-ordering proof to prove this upper bound.

Claim: if \(H : \mathbb{N} \mapsto \mathbb{N} \) satisfies the recurrence

\begin{align}
H(0) &= A \\
H(n) &\leq B + 2H(n - 1) \quad \text{for } n > 0
\end{align}

where \(A > 0, B > 0 \), then for all \(n \in \mathbb{N} \),

\[H(n) \leq (2^n)A + (2^n - 1)B \quad \text{(Eq 1)} \]

The statements we filled out in class are in red.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Let (S = { n \in \mathbb{N} \mid \text{(Eq 1) is false for } n })</td>
<td>Definition of (S)</td>
</tr>
<tr>
<td>2 Suppose that (S) is nonempty</td>
<td>Contradiction hypothesis</td>
</tr>
<tr>
<td>3 Let (k) be the least element of (S)</td>
<td>Well-ordering says a least element must exist, by S2</td>
</tr>
<tr>
<td>4 (Eq 1), for (n = 0), says that (H(0) \leq 2^0A + (2^0 - 1)B = A)</td>
<td>Restatement of (Eq 1).</td>
</tr>
<tr>
<td>5 (H(0) = A)</td>
<td>Line 1 of recurrence</td>
</tr>
<tr>
<td>6 (Eq 1), for (n = 0), is true</td>
<td>S4, S5</td>
</tr>
<tr>
<td>7 (k \neq 0)</td>
<td>If it were, then (Eq 1) would not be true for (n = 0); S5.</td>
</tr>
<tr>
<td>8 (k > 0)</td>
<td>S7, A nonzero natural number must be a positive integer.</td>
</tr>
<tr>
<td>9 (Eq 1) is true for (n = k - 1)</td>
<td>S1, S3, S8</td>
</tr>
<tr>
<td>10. (H(k - 1) \leq (2^{k-1})A + (2^{k-1} - 1)B)</td>
<td>S9, restated as a formula</td>
</tr>
<tr>
<td>11 (H(k) \leq B + 2H(n - 1))</td>
<td>Because (k > 0) (see S7) and line 2 of recurrence.</td>
</tr>
<tr>
<td>12 (H(k) \leq B + 2[(2^{k-1})A + (2^{k-1} - 1)B])</td>
<td>S11, S10.</td>
</tr>
<tr>
<td>13 (H(k) \leq B + (2^k)A + (2^k)B - 2B)</td>
<td>S12, algebra.</td>
</tr>
<tr>
<td>14 (H(k) \leq (2^k)A + (2^n - 1)B)</td>
<td>S13, algebra.</td>
</tr>
<tr>
<td>15 (k \notin S)</td>
<td>S14, definition of (S) in S1.</td>
</tr>
<tr>
<td>16 Contradiction</td>
<td>S15, S3. Hence S2 is false!</td>
</tr>
<tr>
<td>17 S2 is false, so (Eq 1) holds for all natural numbers</td>
<td>S2, S16.</td>
</tr>
</tbody>
</table>
3 Summary

Ideas

• Dictionaries are a very useful data structure that allow us to store pairs of data with a key, and an associated value.

• Options are a built-in type for handling success/failure cases. If an answer was found, a procedure returning an option will return Some(x), where x is the answer you were looking for. If an answer was not found, the procedure will return None.

Skills

• Understand the importance and usage of dictionaries.

• Understand how to use options

• Practice writing a well-ordering proof

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any other CS17 document by filling out the anonymous feedback form: http://cs.brown.edu/courses/cs017/feedback