(Provisional) Lecture 11: Two-argument recursion
10:00 AM, Sep 29, 2017

Contents

1 Introductory

2 Two-Argument Recursion
 2.1 All-matches
 2.2 List-longer?
 2.3 Intersect

3 List Reversal

Announcements

- You are required to attend lab each week, and attend your lab section. If you do not go to the
 lab you are assigned to, you will not get credit, even if you later go to the correct lab. This is
 because we have limited resources in terms of computers and TA staff.

Objectives

By the end of this lecture, you will be able to:

- write several kinds of two-argument recursive procedures

1 Introductory

Today’s class was presented by Phil Klein, one of the original creators of CS17. Most of the material
may be best followed by looking at the PowerPoint slides, which have the “selective revelation” built
into them.

Class began with the idea that almost all today’s procedures would operate on things of type
(int list), and so presented the Data Description for int lists:

; An int-list is either empty, or (cons item lst), where item is an int and
 lst is an int-list.
; Nothing else is an int-list.
;Examples
We previously wrote `improve`, which replaced every integer in an int-list with the number 17:

```
(define (improve aloi)
  (cond
    [(empty? aloi) empty]
    [(cons? aloi) (cons 17 (improve (rest aloi)))]))
```

Now let's look at a different version, `better`, which replaces items in the list not with 17, but with any number you choose. So `better` takes two arguments, a list and a replacement integer.

```scheme
;; better: (int list) * int -> (int list)
;; input: an int list, aloi
;; a number, num, to use to replace every item in aloi
(define (better aloi num)
  ...)
(check-expect (better (list 3 7 10) 14) (list 14 14 14))
...```

This procedure will be recursive, and we can write a recursive diagram for it.

```
Orig. in.: (list 3 7 10), 14
 Rec. In: ???
 Rec. out: ...
Orig out: (list 14 14 14)
```

Just as in all the procedures we've seen so far, the recursive input uses the `rest` of the input. But what about the number? Should we change `that`, too? Nah. We want to replace everything in the tail of the list with 14 as well. So we write

```
Orig. in.: (list 3 7 10), 14
 Rec. In: (list 7 10), 14
 Rec. out: (list 14 14)
 cons on "num" to the recursive output, perhaps?
Orig out: (list 14 14 14)
```

And with that (and perhaps a second or third example to build confidence) we can write the program:

```
(define (better num aloi)
 (cond
 [(empty? aloi) empty]
 [(cons? aloi) (cons num (better (rest aloi)))]))
```
More generally, if we have a recursive procedure that consumes a natural number (rather than an arbitrary integer) and a list, we might do one of two things to simplify the input: we might reduce the natural number (eventually reaching zero) or we might take the rest of the list (eventually reaching an empty list). Or we might do both. Or a couple of other possibilities, which we’ll encounter as we go along.

This weekend, you’ll be doing natural number recursion during lab, so you’ll be more familiar with it as you think about combining natural number and list recursion.

Here’s one example of a “natural number and int list” recursion example: finding the kth item in an int list (that contains at least k items). The secret, which you could discover by writing out a few recursive diagrams, is that the way to find the 4th item in a list is to find the third item in the rest of the list, which is the 2nd item in the rest of that list, which is the first item in the rest of that list. In this case, the recursive call involves simplifying both the natural number and the list. The code’s still a little messy, because we only operate on nonempty lists, and only operate on natural numbers larger than zero, so I won’t write out the details. We’ll return to this later.

But there are some generalities to observe:

- When we have more arguments, the choice of recursive input gets more complex.
- When we have more arguments, the main cond in the procedure may involve more cases — the structure of each argument ends up being involved.

We’ll see a first two-list-arg recursion shortly.

## 2 Two-Argument Recursion

Now we are going to broaden our horizons: we are going to write procedures that consume instances of two recursive data types. While there are many forms of this, we’re going to focus on two specifically:

Two list arguments

- One list shortens, other remains unchanged
- Both lists shorten

### 2.1 All-matches

I didn’t write this up, since the lecture content changed at the last minute, so you’ll have to look at the lecture slides until the lecture TA produces notes on this section.

### 2.2 List-longer?

We’re going to write a procedure that takes in two lists and produces true if the first list is longer than the second, and false otherwise. While a “cheap” answer may be using the length built-in, and writing (>(length alod1)(length alod2)), we’re going to write a recursive procedure. To start, we’ll use a recursive diagram!
• original input: \((\text{list}~1~2~3)~(\text{list}~4~5)\)
  
  – recursive input: \((\text{list}~2~3)~(\text{list}~5)\)
  
  – recursive output: \textit{true}

• original output: \textit{true}

Let’s do another to get an idea of the false case:

• original input: \((\text{list}~1)~(\text{list}~1~2)\)
  
  – recursive input: \textit{empty} \((\text{list}~2)\)
  
  – recursive output: \textit{false}

• original output: \textit{false}

It seems pretty clear. If both lists are \textit{empty}, we should return \textit{false} as the first list is not longer than the second. If the first list is \textit{empty}, and the second is not, we should return \textit{false} as the first list is not longer than the second. If the first list is not \textit{empty}, and the second list is \textit{empty}, we should return \textit{true}. Finally, in the event that both lists have contents, we should recur, removing the first item of each list. With this logic in mind, let’s write the procedure!

```scheme
;;; Data definition:
;;; (a list):
;;; - empty
;;; - (cons a (a list))
;;; list-longer?: (a list) * (a list) -> bool
;;; input: alod1, a list of data
;;; alod2, another list of data
;;; output: a boolean that is true if the first list is longer than the
;;; second list; false otherwise.
(define (list-longer? alod1 alod2)
 (cond
 [(and (empty? alod1) (empty? alod2)) false]
 [(and (empty? alod1) (cons? alod2)) false]
 [(and (cons? alod1) (empty? alod2)) true]
 [(and (cons? alod1) (cons? alod2))
 (list-longer? (rest alod1) (rest alod2))])

(check-expect (list-longer? (list 1 2 3) (list 2))
 (> (length (list 1 2 3)) (length (list 2))))

(check-expect (list-longer? (list 1) empty) true)
(check-expect (list-longer? empty (list 1)) false)
(check-expect (list-longer? empty empty) false)
```
2.3 Intersect

Now we’re going to write a procedure that takes in two lists and produces a list that’s identical to the first list, except the items not in the second list are not there. In short, we’ll produce elements that appear in both lists of data.

We can break this down into two cases. If the first list is empty, the intersection of the two lists must also be empty. That’ll be our base case. If the first list contains items, we must check if each item is a member of the second list. If it is, we should cons this item onto the recursive call. Otherwise, we should not cons it on, and make the recursive call.

```scheme
;; intersect: (int list) * (int list) -> (int list)
;; input: aloi1, a list of data
;; aloi2, another list of data of the same type as aloi1
;; output: a list that's identical to aloi1, except that items not in aloi2 are deleted. In short, elements in both aloi1 and aloi2.

(define (intersect aloi1 aloi2)
 (cond
 [(empty? aloi1) empty]
 [(cons? aloi1) (if (member? (first aloi1) aloi2)
 (cons (first aloi1) (intersect (rest aloi1) aloi2))
 (intersect (rest aloi1) aloi2))])

(check-expect (intersect empty (list 1 2 3)) empty)
(check-expect (intersect (list 1 2 3) empty) empty)
(check-expect (intersect (list 1 2 3) (list 1 2 3 4 5 6)) (list 1 2 3))
(check-expect (intersect (list 1 2) (list 0 3 5) empty))
```

3 List Reversal

To illustrate the value of helpers (and, again, the trick of simplifying a problem by solving a more complicated problem!), let’s reverse a list. You’ll also see that the types of two-argument recursion we defined above are not complete.

We’ll start with a recursive diagram:

- original input: (list 1 3 4)
  - recursive input: (list 3 4)
  - recursive output: (list 4 3)
- original output: (list 4 3 1)

It sure seems as if reversing a nonempty list means reversing the rest of the list and then adding something on to the end, which we’re generally avoiding (for reasons that’ll become evident very soon). As we get down to a zero- or one-element list, reversing gets easy, but the more general case is a mess. For the empty list, the answer’s just empty. For a list (list v), the result is (list v).
But beyond that . . . it’s a mess. Here’s where we use the “bigger helper” trick. Note: we have to call our procedure my-reverse because Racket has reverse built into it.

We’re going to define reverse-with-tail, which takes two arguments, alod and tail (another list of data), and produces the reverse of alod with tail appended to it.

```racket
> (reverse-with-tail (list 1 2 3) (list 4 5))
(list 3 2 1 4 5)
> (reverse-with-tail (list 1 2 3) empty)
(list 3 2 1)
```

It’s pretty clear, if you’ve got reverse-with-tail, how to write my-reverse:

```racket
;; Data definition:
;; (`a list):
;; - empty
;; - (cons `a (`a list))
;; my-reverse: (`a list) -> (`a list)
;; input: alod, a list of data
;; output: a new list, consisting of all element of alod, in reverse order

(define (my-reverse alod)
 (reverse-with-tail alod empty))

(check-expect (my-reverse empty) empty)
(check-expect (my-reverse (list 1 2)) (list 2 1))
(check-expect (my-reverse (list 1 2 3)) (list 3 2 1))
```

So how do we write reverse-with-tail? The answer is not to just write reverse and then call append (a built-in that you’re writing for this week’s HW!), because we’re using this procedure to write reverse!

Let’s look at some recursive cases. To do so, we have to decide how we’re going to recur. Let’s try this example.

- original input: (list 1 2) (list 17 18)
  - recursive input: (list 2) (list 17 18)
  - recursive output: (list 2 17 18)

- original output: (list 2 1 17 18)

That looks horrible. We need to perform surgery to stick that “1” in there. How about this:

- original input: (list 1 2) (list 17 18)
  - recursive input: (list 2) (list 1 17 18)
  - recursive output: (list 2 1 17 18)
• original output: (list 2 1 17 18)

Wow! By changing both lists— one getting simpler, the other getting more complicated — we’ve got ourselves a solution!

```scheme
(define (reverse-with-tail alod start)
 (cond
 [(empty? alod) start]
 [(cons? alod) (reverse-with-tail (rest alod)
 (cons (first alod) start))])))
```

(check-expect (reverse-with-tail empty empty) empty)
(check-expect (reverse-with-tail (list 1 2) empty) (list 2 1))
(check-expect (reverse-with-tail (list 1 2 3) (list 4 5)) (list 3 2 1 4 5))

Done! Woo hoo! The overall result is

```scheme
(define (my-reverse alod)
 (reverse-with-tail alod empty))
```

(check-expect (my-reverse empty) empty)

(check-expect (my-reverse (list 1 2)) (list 2 1))
(check-expect (my-reverse (list 1 2 3)) (list 3 2 1))

Now you might ask yourself a couple of questions here:

- I see that it solves the problem, but what on earth motivated you to write reverse-with-tail, Spike?
- How many arguments can a helper-procedure like this have? Could it have 3, or 4, or twelve?

The answer to the second question is pretty much “two or three”. There’s a tendency to use these things in a way that’s sloppy and that makes it hard to express what your procedure actually does. If you can’t write a crisp specification for the helper, you’re probably doing something wrong.

As for the first question, the answer is that in looking at the recursive diagram, I saw that right from the start (unlike in the length procedure), I already had part of the answer. In reversing (list 1 2 3), the first of the input list was in fact, something that needed to be right at the start of building up an answer. That meant that I wanted to have a gradually accumulating answer, and the “tail” was a way to keep track of that as I went deeper and deeper into the recursion.

Perhaps a better name for our helper would be reverse-with-partial-result.

Notice that in this two-argument recursion, while one argument shrinks, the other is growing at every step of the recursion. That’s in contrast to zip, where both grew smaller, and in contrast to intersect where one argument shrinks and one argument stays the same.

**Question:** Are there any other possibilities, like one argument staying the same and the other getting more complicated, or both getting more complicated?

**Answer:** In those cases, repeated recursive invocations of the procedure process more and more complicated data, and never terminate: the (empty? lst) clause never gets evaluated, and the other clause always ends up making a recursive call. (There’s one more case: both arguments stay the same size; that doesn’t work either.) It’s essential, in writing recursive procedures in CS17, that at least one argument gets simpler in each call, or proving that the procedure terminates becomes infeasible.