Othello Help Session

Othello TAs: Chantal, Elaine, Hans, Justine, Katie, Laura, Nia, Olivia, Peter, Rachel, Sam, Tristin, and Sophia
A Quick Reminder

Please fill out the **Intended Final Project Form** if you haven’t already!

- This form is *not binding*!
- You can complete any final project regardless of what you indicate on the form
Overview

- Writing the GUI
- Switching turns and the referee
- Checking for valid moves and flipping
- The MINIMAX(!!!) algorithm
- Copy constructor
Writing the GUI (1/2)

● Think Tetris! 2D Game Board
 ○ Array of squares where each square represents a space on the board
 ○ Could use two arrays – one for pieces and one for squares.
 ■ Separates the graphics from the logic
 ○ Board needs to react when you click on it… think of which components should be “smart”
 ○ **Important question to answer early on:** how will you represent and store your Othello pieces?
Writing the GUI (2/2)

- **Player Menus**
 - Clicking a radio button sets a player as human or computer
 - Should be able to switch between human and computer players, and two computers of different intelligence levels, at any point during a game (play with the demo to see how this works)
 - Have a default player configuration for when the game begins (otherwise you may have NullPointerExceptions!)
Switching Turns and the Referee 1/3

● Game would be pretty boring if it only had one player

● Need some way of figuring out when one player’s turn is over to switch to next player

● We can use a Referee class!
 ○ keeps a reference to both players, keep track of which one is the current player
 ○ tells a player to move when it is their turn
Switching Turns and the Referee 2/3

- Referee handles checking for illegal moves
 - keeps players from moving out of turn
 - keeps players from moving when the game has ended
 - makes sure that a human doesn’t try to move during computer player’s turn (and vice versa)
 - etc…
Switching Turns and the Referee 3/3

- Referee should contain a **Timeline**! But why?
 - Computer player’s moves should update on screen with each timer tick
 - So how do we do that? The first line of `handle()` should call `stop()` on the **Timeline**. Should we be calling `play()` in the `handle()` method?
 - Should the referee tell itself that the player has finished moving or should the referee be told that a move, either a human player’s or a computer players, has ended?
How fun would a game be if there was no such thing as a “valid” move? (hint: none)

Checking for a valid move:
 ○ first, make sure that the space is empty
 ○ then, make sure that a sandwich can be made by placing a piece at that location
How to check for sandwiches?

- you have two potential tools – **recursion** and/or **iteration**
- starting with a square, check to see if the adjacent square is of the opposite color (i.e., the beginning of a sandwich)
- then, check the next square, and the next square, and the next square, etc…. **UNTIL:**
 - You reach a square with a piece of your own color … move is **valid!**
 - Empty square or board edge is reached … move is **invalid!**
- must check all 8 adjacent squares – if a sandwich is found in at least one of those directions, the move is valid. How can you check 8 directions in a code-minimizing way?

Border squares may help you (think about Tetris)

- can think of border squares as spaces - 10x10 array for 8x8 board
Now that we’ve figured out how to check for valid moves, what should we do when we find one?

Flip pieces! This boils down to:
- check in each direction to see which pieces have been sandwiched
- for each direction, flip all of the pieces in the middle of the sandwich, until you reach a piece of your own color
- this could be done recursively or iteratively
- very similar algorithm to checking for a sandwich
Flipping Pieces 2/2

● What about when you get to the edges of the board?
 ○ something has gone wrong, you shouldn’t reach one of these when you are flipping!

● Remember that a sandwich could be created in more than one direction, so we must flip pieces in all directions that have a sandwich

● After you get flipping working, you’re almost done with the Human Player! … But we’re all about computers in CS15 …
Minimax Overview 1/4

● This is one algorithm that allows your computer to play at three levels of intelligence, where each level corresponds to a level of recursion
 ○ so, a level three computer means three method calls (the initial invocation + 2 recursive invocations per move)
 ○ decides player’s best move by looking ~ into the future ~
 ○ please see the AI handout for more in-depth information.
Minimax Overview 2/4

- **Level 1**: For each possible move
 - make the move and see what the score would be
 - keep track of best move (one with highest score)
 - after all moves have been considered, return the best move (i.e., the one with the highest `boardEval()`).
Level 2: For each of your possible moves

- make the move, and find all of the opponent’s valid moves
- now, switch the perspective to the opponent and recursively call `miniMax()` on each of the opponent’s possible moves.
- assume that the opponent would make the best possible move, given your move, with intelligence 1 (which is `intelligence--`).
- the call to minimax should return the opponent’s best move, given your first move
- then negate their move, and use that information to keep track of the best move that you can take. You should be trying to minimize the opponent’s score.
● **Level 3**: For each possible move
 ○ make each possible first move, find all of the opponent’s moves
 ○ call `miniMax()` recursively from opponent’s perspective, at one less intelligence level (`intelligence--`)
 ○ from there, the algorithm should make each possible second move
 ○ it should then call `miniMax()` recursively from the opponent’s opponent’s perspective – the first player – at (`intelligence--`)
 ○ now, we are at the base case. Do what we would do in the level 1 case, remembering to return the best move
 ○ Then, at the second level, the opponent should **negate** its opponent’s best move, and use that information to choose and return its best move to the first player
 ○ Then, the first player should **negate** the second player’s best move and use that information to decide what its own best move is.
How do we make a whole bunch of moves?

- we want to make sure that we are able to “try out” possible best moves on our board without updating the actual board visually
- solution: Make a *dummy board* that is a copy of the actual game board by using a copy constructor! (more on this later)
What does it mean for a move to be the “best”?
- each space on the board has a particular value, or weight, that is high for “good” spaces (i.e. corners) and low for relatively bad ones
- we’ve provided a support board weights class: `cs015.fn1.OthelloSupport.DefaultWeights`
- this is mostly just a table of values, you are welcome to implement your own!
- you’ll want to write a `boardEval()` method that decides the “value” of a player’s move
- the move with the highest `boardEval()` is the best move
How do we return a “move”?
- need to return a row, column pair representing the move, as well as the value of that move
- think of how you can return multiple pieces of information from a single method …

Let’s walk through an example of Minimax in action…
Minimax Example (1/5)

- Example in the handout with an AI of level 3 intelligence
- Each possible choice for a move is simulated on a “dummy” board
- Since the intelligence level is 3, this is done for three successive moves (current player – opponent – current player)
Minimax Example (2/5)

- At the base case, the board advantage of the current player is determined using the `boardEval()` method you will write, which takes advantage of the support `DefaultWeights` class.

- The board evaluation is simply summing over all of the values of the spaces that the current player “owns”, and subtracting that from the sum of the values of the spaces that the opponent “owns”.

- Since this is the base case, the values are directly calculated using `boardEval()` for the current player.
Minimax Example (3/5)

- At the 2nd level, board values are again evaluated for each of the possible configurations.
- However, we use the greatest value from the board values returned from the previous level.
- Then, this value **must get** negated; we do this because we are now considering the board from opponent’s perspective – a good configuration for my opponent is a bad one for me!
Minimax Example (4/5)

- At the 1st level, board values are again evaluated for each of the possible configurations after the 1st move.
- However, we use the greatest value from the board values returned from the previous (2nd) level.
- Then, this value **must get** negated because we are now considering the board from current player’s perspective – A bad configuration for my opponent is a good one for me.
- See any commonalities? (hint: yes)
In this example, the current player should do the move that will earn them 8 points since it’s the best move from using our algorithm.

Our Minimax algorithm allows us to pick the best move, based on the assumption that the opponent will try to make their best move, based on the assumption that we would make our best move.

In general, you can use this algorithm to look ahead as many moves as you’d like.
Minimax Pseudocode

public <return type> getBestMove(<parameters>)
 for each move that the current player can make:
 make a dummy board
 make the move on that dummy board

 if we are at the base case (i.e., intelligence = 1):
 move’s value is the boardEval for the current player

 otherwise:
 move’s value is that of getBestMove(…)
 from the opponent’s perspective (remember to negate the value of what gets returned)

 return the move with the highest value
Minimax: Tic Tac Toe Edition

If you want to take a closer look at this, here is the link!

https://xkcd.com/832/
Special Cases to Watch Out For 1/2

- Sometimes, a player may not be able to move if there are no legal moves during their turn. In this scenario, the opponent gets to go again, i.e., twice in a row.
 - this means that you should first check to see if there are any moves before trying to make all of the possible moves!
Special Cases to Watch Out For 2/2

● Sometimes, neither player can make any valid moves, even if there are open spaces left on the board
 ○ this means that the game is over – you should check for this special case as well!

● Sometimes, the person you’re playing against isn’t very good
 ○ very dangerous special case – you should approach this scenario by leaving no mercy for your opponent
Copy Constructor

- Minimax requires a lot of “testing out” possible moves – how do we do this without modifying our main game board?

- **Answer:** Use a copy constructor!

- **Why use a copy constructor?**
 - let’s you replicate the current state of the game
 - gives you an internal board that is a mirror image of, but logically and graphically distinct from, your visual game board
 - since higher intelligence requires looking at two or three moves in the future, we must pass the copied boards, on which we made previous moves, to successive levels of recursion
More on the Copy Constructor

- A copy constructor is an overloaded constructor for a class.
- Takes in exactly one parameter – a reference to some instance of the same class.
 - for example: `public Car(Car car)`
- Copy constructor then uses accessors to retrieve important information from the instance and assigns the exact same values to itself.
public class Student{
 // old school constructor
 public Student(){ ... }

 // new school, copy constructor
 public Student(Student stud){
 _age = stud.getAge();
 _name = stud.getName();
 _grade = stud.getGrade();
 }
}

- Watch out for assigning arrays like this, though!
 - _boardArray = gameBoard.getBoard() it will make your copied array point to the same memory location as your visual board
 - a board is just a 2D array of objects, so all we need to do is iterate through each location in the old array and make a copy of it’s contents for each corresponding location in the new array
Good Luck!

- Start **NOW** (seriously, there’s no reason to wait)
- Make sure you get human vs. human working *early* so you leave enough time to write the computer player algorithm
- Don’t underestimate Minimax! It is a challenging algorithm to grasp conceptually. Come to hours early to talk about it!
- Hand simulate, use the debugger, use print lines, think critically about your problems.
 - Write a method for debugging that prints the current board state
- Did we mention start now?
- Good luck – Othello’s tough, but (in our opinion) the most gratifying final project to do. You got this.