
CSCI 0111: Sample midterm questions

Oct 16, 2020

These questions have been used on past CSCI 0111 exams. They are somewhat
more programming-focused than our midterm will be this year, but should still be

useful for studying!

Question Points

Erroneous expressions? 30

The in-order function 20

The eye function 20

Understanding operations 10

The order-by-total function 20

Total: 100

i

Erroneous expressions? (30 points)
Examine each of the programs below. Next to each program, write either (1) the output
the program produces in Pyret’s “Interactions” window when it is run, or (2) the word
“ERROR” if the program produces an error. These programs are not designed to trip
you up; if they are wrong, they are not wrong for “trivial” reasons such as missing colons
or the like.

(a) 5 points Program 1

x = 1
x + 3

(a)

(b) 5 points Program 2

x = 1
if x:

"a"
else:

"b"
end

(b)

(c) 5 points Program 3

x = false
if x:

"a"
else:

"b"
end

(c)

Douglas Woos
4

Douglas Woos
ERROR

Douglas Woos
"b"

(d) 5 points Program 4

This function’s definition is the same
in Programs 4, 5, and 6
fun greater-than-five(x :: Number) -> Boolean:

x > 5
end

greater-than-five(6)

(d)

(e) 5 points Program 5

This function’s definition is the same
in Programs 4, 5, and 6
fun greater-than-five(x :: Number) -> Boolean:

x > 5
end

3 + greater-than-five(6)

(e)

(f) 5 points Program 6

This function’s definition is the same
in Programs 4, 5, and 6
fun greater-than-five(x :: Number) -> Boolean:

x > 5
end

if greater-than-five(6):
"a"

else:
"b"

end

(f)

Page 2

Douglas Woos
true

Douglas Woos
ERROR

Douglas Woos
"a"

The in-order function (20 points)
We want to define a function in-order that takes three numbers and determines
whether its arguments are in sorted order. Here’s what the function looks like, with
some placeholders .

fun in-order(

x :: Type of x ,

y :: Type of y ,

z :: Type of z)

-> Output type :

Function body

where:
in-order(1, 1, 1) is true
in-order(1, 2, 2) is true
in-order(1, 2, 5) is true
in-order(3, 3, 2) is false
in-order(3, 2, 1) is false
in-order(3, 1, 4) is false

end

What should we replace the placeholders with so that the function satisfies its specifi-
cation and passes all of the tests in the where block?

(a) 2 points Type of x

(a)

(b) 2 points Type of y

(b)

(c) 2 points Type of z

(c)

(d) 4 points Output type

(d)

(e) 10 points Function body

(e)

Page 3

Douglas Woos
Number

Douglas Woos
Number

Douglas Woos
Number

Douglas Woos
Boolean

Douglas Woos
(x <= y) and (y <= z)

The eye function (20 points)
You’ve written a program that draws a complex scene, with multiple interacting char-
acters. The program is done, but you’re looking for ways to clean it up. You notice that
you’ve written similar code in a few places to draw eyes. For instance, in one location
you’ve written

overlay(
circle(15, "solid", "green"), # iris
circle(50, "solid", "white") # eyeball

)

In another, you’ve written

overlay(
circle(15, "solid", "brown"), # iris
circle(50, "solid", "white") # eyeball

)

Write an eye function that can be used to reduce this repetition. You do not need to
include a docstring, comments, or tests for this function.

Page 4

Douglas Woos
fun eye(color :: String) -> Image:
 overlay(
 circle(15, "solid", color),
 circle(50, "solid", "white"))
end

Your function could also take a size parameter�

The next two questions use the following table:

orders = table: product :: String, unit-price :: Number,
quantity :: Number, discount-code :: String

row: "Warm hat", 10, 17, ""
row: "Winter coat", 50, 2, ""
row: "Scarf", 12, 10, "CHEAPSCARF"

end

Understanding operations (10 points)
Examine each of the expressions below. Next to each expression, write the output it
produces when it is entered in Pyret’s “Interactions” window. None of the programs
produce errors.

The orders table, above, has been defined in Pyret’s “Definitions” window.

(a) 5 points Expression 1

orders.row-n(0)["product"]

(a)

(b) 5 points Expression 2

filter-with(orders, lam(r):
(r["discount-code"] == "") and
(r["quantity"] < 15)

end).row-n(0)["unit-price"]

(b)

Page 5

Douglas Woos
"Warm hat"

Douglas Woos
50

The order-by-total function (20 points)
You’ve been asked to write a function called order-by-total, which takes a table
with the same structure as the orders table (as defined above). It should add a column
to the table called total-price, which contains the unit-price and quantity
columns multiplied together. It should return the resulting table, sorted by the values
in the new column in descending order. It should pass the following test:

orders-answer = table: product :: String,
unit-price :: Number,
quantity :: Number,
discount-code :: String,
total-price :: Number

row: "Warm hat", 10, 17, "", 170
row: "Winter coat", 50, 2, "", 100
row: "Scarf", 12, 10, "CHEAPSCARF", 120

end
order-by-total(orders) is orders-answer

Your function doesn’t need to include a docstring or tests, but it should be correctly
annotated with types.

Page 6

Douglas Woos
fun order-by-total(t :: Table) -> Table:
 order-by(
 build-column(t, “total-price”,
 lam(r):
 r[“unit-price”] * r[“quantity”]
 end),
 “total-price”,
 false)
end

Could use a helper function instead of the lambda�

