On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks

Mark R. Cutkosky

Presented by: Paul Savickas
Outline

- Motivation
- Background
- Analytical Grasp Modeling
- Human Grasp Selection
- Grasp-Exp
- Discussion
Motivation

- As robots become ubiquitous in society, their ability to perform a variety of tasks will be essential.

- Robots will need to master a variety of grasps for performing these tasks.

- We can start by understanding human grasp selection.
Background

- Robotic hands are growing more complex
- Control hands via a firm understanding of the task to be performed
- By studying human grasps we can discover a large set of the grasps necessary for daily work
Analytical Grasp Modeling

- Earlier work always made various assumptions:
 - Point contact
 - No sliding or rolling of fingertips
 - Static analysis
 - Idealized friction
 - Simplified motor mechanics
Issues in Analytical Grasp Modeling

Kinematics
- force/velocity relations
- form, force closure
- singularity & redundancy
- isotropy
- particular & homogeneous solns
 - contact kinematics (e.g., rolling, sliding)

Dynamics
- accelerations
- reflected inertia properties
- stability
- impedance/admittance
- actuator & drive-train dynamics

Constitutive Relations
- joint & link compliance
- fingertip deformations
- contact properties
- friction conditions
- object stiffness

Geometry
- object shape
- local surface geometry (e.g., curvature)
- accessibility
Analytical Measures

- Compliance
- Connectivity
- Force Closure
- Form Closure
- Grasp Isotropy

- Internal Forces
- Manipulability
- Resistance to Slipping
- Stability
Human Grasp Selection

- Small-batch machining operations
 - Manufacturing grasps
 - Human adaptability allows them to outperform machinery for many tasks
 - Single-handed operations with metal parts and tools
 - Observation and Interviews
Grasp-Exp (1)

- At the time of the paper, Grasp-Exp had 50 rules
 - Authors expect 100 would be satisfactory
- Grasp-Exp asks questions to determine grasp needed
 - Will ask further questions for clarification when necessary
- In the end, recommends a grasp and a set of similar grasps
Grasp-Exp (2)

- What is the dexterity requirement?
- What is the stability requirement?
- How important is security in your grasp?
- What is the clamping requirement?
- What is the object-thickness requirement?
- What is the object-size requirement?
- What is the rough-object-shape requirement?
- Which of the following is closest to the shape of the object?
Issues Discovered from Grasp-Exp

- Quantification of “precision”, “dexterity”…
 - Additional questions necessary
- Size terms
 - What is “heavy”, “large”, or “thin”?
 - Relative size more useful
- Vague object descriptions
 - General shapes inadequate
 - Focus on geometry of part being grasped
Sequences of Grasps

- Unscrewing a knob
- Using a tool (e.g. screwdriver)
Video

- Robotic Grasps
- http://www.youtube.com/watch?v=A2dBq0fWCdY
Discussion

- Analytic approaches to grasp choice may not be useful in the real world.
- Human hand has evolved over time for communication etc…, not just factory work. We should be able to outperform the human hand.
- Robotic hand specialization winning out over generality
More Discussion

- This is where we were ten years ago, but how much progress have we really made?

- Learning to Grasp Objects
 - http://www.youtube.com/watch?v=mCcTBe3UzRM

- Grasping Unmodeled Objects
 - http://www.youtube.com/watch?v=lhnyqMoRbfw
Backup

- Kitchen Robot
- http://www.youtube.com/watch?v=v_Enz3h-xlU