Effective Reinforcement Learning for Mobile Robots

By William D. Smart and Leslie Pack Kaelbling

Presented by Gal Peleg
CSCI2950-Z, Brown University
March 1, 2010

Presentation Outline

- Forecast
- Background
 - Motivation & Problem Statement
 - The World of Reinforcement Learning (RL)
 - The Q-Learning Algorithm
 - RL Applied to Mobile Robots
 - The Learning Framework: Inclusion of Prior Knowledge
- Experimental Results
 - Corridor Following
 - Obstacle Avoidance
- Conclusions
- Future Work
Forecast

- It’s easier and more intuitive for the programmer to specify *what* the robot should be doing

- Having a robot *learn* how to accomplish a task, rather than being told explicitly is an appealing idea

- The Authors introduce a framework for reinforcement learning (RL) on mobile robots and describe experiments that validate its performance
Motivation & Problem Statement

• Challenges
 • Programming robots can be very time-consuming
 • Many iterations to fine-tune low-level mapping from sensors to actuators
 • Robots’ sensors and actuators are different from those of humans
 • Difficult to translate knowledge about a task into terms useful for the robot
 • Instead...
 • Provide some high-level specification of the task and use machine learning to “fill in the details”
The World of Reinforcement Learning

• Can be described by
 • A set of states S, and a state of actions A

• At each (discrete) time step
 • Agent observes state s_t of the world
 • Chooses an action a_t to take
 • Is then given a reward r_{t+1}
 • Reflects how good the action was in a short-term sense
 • Observes new state of the world s_{t+1}

• Goal
 • Use tuple $(s_t, a_t, r_{t+1}, s_{t+1})$ to learn a mapping from the state-action pair to an optimal value function
The Q-Learning Algorithm

- **Q-Function**
 - Is typically stored in a table, indexed by state and action
 - Usually starts with arbitrary values
- We iteratively approximate the optimal Q-Function based on our observation of the world

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t(s_t, a_t) \times \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]
\]

- Considering all possible actions given a state, we select the one with the largest Q-value

\[
\pi^*(s) = \arg \max_a Q(s, a).
\]
Blackjack Q-Learning Example

```java
public static final int numSleev = 100;

/** The number of cards left in the deck before cutting off and re
 public static int CUT_OFF_SIZE = 10 * numPlayers;

/** The minimum bet allowed in this simulation. */
 public static double MIN_BET = 5.0;

public static final double ALPHA = 0.1; //learning rate
public static final double GAMMA = 0.9; //discount factor

 public static final int COUNT_STATES = 3;
```
Reinforcement Learning Applied to Mobile Robots

- Makes sense because
 - We can design a much higher-level task description in the form of the reward function, $R(s,a)$

- Shortcomings
 - Q-learning requires discrete states and actions
 - Authors combat this by using a suitable value-function approximation technique (i.e. the HEDGER algorithm)
 - Sparse reward functions
 - Combated through “Inclusion of Prior Knowledge,” the meat and potatoes of the authors’ learning framework
The Learning Framework: Inclusion of Prior Knowledge

• First phase
 • Value-Function approximation is not complete enough to control the robot
 • Robot is therefore supplied control policy
 • Can be through actual control code or teleoperation
 • Exposes the RL system to “interesting” parts of the state space
 • RL system passively watches states, action, and rewards
 • We use these to bootstrap the value-function approximation

• Second phase
 • Full control is handed back to the standard RL system
 • Robot is now capable of finding reward-giving states
Corridor Following: The Setup

- State Space Contains 3 Dimensions
 - Distance to end of corridor, Distance from left hand wall, Angle to target point

- Rewards
 - +10 for reaching end of corridor, 0 for anything else

- Phase 1 tested using
 - Coded control policy, direct control examples, and simulation
Corridor Following: Results

- Coded Control Policy
 - Statistically indistinguishable from “optimal”

- Direct Control Examples
 - Also statistically indistinguishable from “optimal”
 - Experienced more varied, so framework is able to generalize more effectively

- Simulation
 - Fastest simulation time > 2 hours
 - Both phase 1 learning attempts above were done in 2 hours
Obstacle Avoidance: The Setup

- **State Space Contains 2 Dimensions**
 - Distance to goal, Direction to goal

- **Rewards**
 - +1 for reaching target, -1 for collision with obstacle, otherwise 0

- **Phase 1 tested using**
 - Only direct control examples, and simulation

- **Much harder task**
Obstacle Avoidance: Results

- Direct Control Examples
 - Statistically indistinguishable from “optimal”
- Simulation
 - Took more than 6 hours to complete the task, and reached the goal only 25% of the time

Fig. 9. Successful runs (out of 10) for the obstacle avoidance task.

Fig. 10. Performance on the obstacle avoidance task.

<table>
<thead>
<tr>
<th>Starting distance</th>
<th>1m</th>
<th>2m</th>
<th>3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful</td>
<td>46.2%</td>
<td>25.0%</td>
<td>18.7%</td>
</tr>
<tr>
<td>Time (hours)</td>
<td>2.03</td>
<td>6.24</td>
<td>6.54</td>
</tr>
</tbody>
</table>

TABLE I

Performance on the simulated obstacle avoidance task.
Conclusions

1. Final performance for both tasks is significantly better than any of the examples used in phase 1 training.

2. Using example trajectories allows us to incorporate human knowledge about how to perform a task in the learning system.

3. The framework is capable of learning good control policies more quickly than moderately experienced programmers can hand-code them.
Future Work

- How complex a task can be learned with sparse reward functions?
- How does the balance of “good” and “bad” phase one trajectories affect the speed of learning?
- Can we automatically determine when to change learning phases?