Unsupervised Scoring for Scalable Internet-based Collaborative Teleoperation

Ken Goldberg, et. al.
UC Berkeley
Dana Plautz, Intel
The Problem

- Many users simultaneously share control using browser-based point-and-click interfaces
- MOSR – Multiple Player Single Robot
Why do we care?

- Evaluate user performance in distance learning, automated methods
- Provides individual assessment/reward and incentive for active participation
- Other applications
Contributions

- “Unsupervised Scoring": a numerical measure of individual performance based on clustering and response time.
- It does not rely on a human expert to evaluate performance
- Performance based on “leadership”: how quickly users anticipate the decision of the majority
Contributions

- A new user interface incorporating this metric using Java is implemented.
- A distributed algorithm for rapidly computing and displaying user scores is described.
Methods

- Unsupervised scoring metric based spatial distributions of votes
- Task: location picking
- For each user i, for mouse click of (x,y) on image k at time t, define the corresponding vote $v_{ik}(t) = [x_{ik}(t), y_{ik}(t)]$
Methods

- Voter Interest function:

 \[f_{ik}(x, y) \sim N(v_{ik}(t), \Sigma_{ik}(t)) \]

 - A truncated bivariate normal density function with mean at \(v_{ik}(t) \) (votel)
 - \(\Sigma_{ik}(t) \) is a 2x2 variance matrix, such that

 \[\iint_{\sigma} f_{ik}(x, y) \, dx \, dy = 1 \]
Methods

- **Ensemble Interest Function**

 \[f_k(x, y) = \frac{1}{n} \sum_{i=1}^{n} f_{ik}(x, y) \]

 - Normalized sum of voter interest functions

- **Consensus Region**

 - The cutting plane defines an iso-density contour in the Ensemble Interest Function that defines a set of subsets of voting image

 \[S_k = \{(x, y) \mid f_k(x, y) \geq z_k\} \]
Methods

- Majority Consensus Region
 - Consensus region with most votels

\[
C_k = \text{Max}(\sum_{i=1}^{n} I_k(i, j))
\]

- Let:
 \[
 I_k(i, j) = \begin{cases}
 1 & \text{if } [x_{ik}(T), y_{ik}(T)] \in C_{jk} \\
 0 & \text{otherwise}
 \end{cases}
 \]

Index for votels inside consensus region j
Unsupervised Scoring Metric

- How well the voter anticipated the majority consensus region
 \[\frac{T_s - t_{s,i}}{T_s} I_{s,i} \]
 - \(I_s\) Outcome index for voter \(i\) and voting image \(s\) (majority consensus region)
 - \(t_{s,i}\) Duration of the time stay in majority interest region
 - \(T_s\) Total voting time for image \(s\)

- Pass the term to a low pass filter to stabilize “Leadership Score”

\[
L_{k+1,i} = (1 - \alpha)L_{k,i} + \alpha \frac{T_s - t_{s,i}}{T_s} I_{s,i}
\]
Tele-twister Application

- Distributed algorithm implemented in Java
- Two human players called “twisters”
- Players assigned to two teams
- View game status using low framerate video
Twister Application

- In 4 subsequent rounds, the team with highest average score consistently wins the round.
- A team have higher scores when the team collaborates, reaching consensus faster.

Average Score

- Blue Team
- Red Team
Conclusions

- An unsupervised scoring metric for collaborative teleoperation
- Encourages active participation and collaboration
- Distributed algorithm for automatically computing it