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Introduction

" Problem

" discovery of low dimensional representations of high-
dimensional data

" 1n many cases, local proximity measurements also available
" ¢.g. computer vision, sensor localization
® Current Approach
" semidefinite programs (SDPs) — convex optimization
® Disadvantage: it doesn’t scale well for large inputs
® Paper Contribution
" method for solving very large problems of the above type
® much smaller/faster SDPs than those previously studied
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Sensor localization

®  Determine the 2D position of the sensors based on estimates of local
distances between neighboring sensors

® sensors 1, ] neighbors iff sufficiently close to estimate their pairwise distance via
limited-range radio transmission

" Input.

¥ n sensors

®= d; : estimate of local distance between neighboring sensors i,
" OQOutput:

" X, X, ... X, € R?: planar coordinates of sensors
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Work so far...

® Minimize sum-of-squares loss function

. o L2 22

1]

® (Centering constraint (assuming no sensor
location 1s known 1n advance)

(2)

® Optimization in (1) non convex
=>» Likely to be trapped in local minima !
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Convex Optimization

® Convex function

® a real-valued function f defined on a domain C that for any
two points x and y in C and any # 1n [0,1],

ol /(1 + (1 —t)y) < tf(z) + (1 —1)f(y)

® Convex optimization

Standard form is the usual and most intuitive form of describing a convex optimization problem. It consists of the
following three parts:

= A convex function fu[ TI : B"™ — IR to be minimized over the variable T

= Inequality constraints of the form u]ﬁ II'I << 0, where the functions j} are convex

= Equality constraints of the form & (x) =0, where the functions ."1-.,; are affine. In practice, the terminology "linear” and
"affine” are generally equivalent and most often expressed in the form A1 = b, where 4 is a matrix and bis a
vector.

A convex optimization problem is thus written as

minimize ]‘lu[ xr I subject to
filx) <0, i=1,...
hifr)=0, i=1,...
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Solution to convexity

® Define n x n mner-product matrix X
" X=X X
® Get convex optimization by relaxing the constraint that
sensor locations x. lie in the R plane

Minimize: Y (X —2X;; +X;; — H’“,]h

)

€)

i~eg
subject to: (i) Y X;;=0 —and (i) X = 0.
J—H'EJ. =

B x. vectors will lie in a subspace with dimension equal

to the rank of the solution X

=» Project x. s into their 2D subspace of maximum variance to

get planar coordinates
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Maximum Variance Unfolding (MVU)

® The higher the rank of X, the greater the information loss after
projection

®  Add extra term to the loss function to favor solutions with high
variance (or high trace)

Maximize: tr(X) — ”E- _. [1 L9X, + X, ’f“,]h
| @)

subject to: (i) Tl =0 and (i) X = 0,

® trace of square matrix X (tr(X)): sum of the elements on X’s main
diagonal

® parameter v > 0 balances the trade-off between maximizing
variance and preserving local distances (maximum variance

unfolding - MVU)
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Matrix factorization (1/2)

" G : neighborhood graph defined by the sensor network

B Assume location of sensors is a function defined over the nodes
of G

® Functions on a graph can be approximated using eigenvectors of
graph’s Laplacian matrix as basis functions (spectral graph
theory)

- graph Laplaman I: li j 1 ifd # j and v; Jd_] acent v
otherwise

" eigenvectors of graph Laplacian matrix ordered by smoothness

® Approximate sensors’ locations using the m bottom
eigenvectors of the Laplacian matrix of G

- Xl ~ a=1m Q1(1Y(x
" Q:nx m matrix with the m bottom eigenvectors of Laplacian matrix
(precomputed)

= y :mx 1 vector,a=1, ..., m (unknown)
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Matrix factorization (2/2)

® Define m x m inner-product matrix Y
- Y(xB — Yo' Yp

® Factorize matrix X
" X=QYQT

" Get equivalent optimization

" tr(Y) = tr(X), since Q stores mutually orthogonal eigenvectors
" QYQT satisfies centering constraint (uniform eigenvector not included)

Maximize:  tr(Y)-»)  [(QYQ');-20QYQ");+(QYQ');; - di)]

subjectto: Y =~ 0 ’ (5)

® [nstead of the n x n matrix X, optimization 1s solved for the
much smaller m x m matrix Y !
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Formulation as SDP
®  Approach for large input problems:

® cast the required optimization as SDP over small matrices with few
constraints

® Rewrite the previous formula as an SDP 1n standard form
" e m™2:vyector obtained by concatenating all the columns of Y

" Ae m2xm2:positive semidefinite matrix collecting all the quadratic
coefficients in the objective function

= be m2:vector collecting all the linear coefficients in the objective
function

" | : Jower bound on the quadratic piece of the objective function
® Use Schur’s lemma to express this bound as a linear matrix inequality

Maximize: ') —/

1y
subjectto: ()Y =0  and (ii) { I 10T JL\‘ ] - ©
(AZ)) /
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Formulation as SDP
® Approach for large input problems:

® cast the required optimization as SDP over small matrices
with few constraints

©)

® Unknown variables: m(m+1)/2 elements of Y and
scalar |

B Constraints: positive semidefinite constraint on Y and
linear matrix inequality of size m*x m?

® The complexity of the SDP does not depend on the
sevitiiimber of nodes (n) or edges in the network! 11



Gradient-based improvement

B )-step process (optional):
® Starting from the m-dimensional solution of eq. (6),

use conjugate gradient methods to maximize the
objective function 1n eq. (4)

® Project the results from the previous step into the R?
plane and use conjugate gradient methods to
minimize the loss function mn eq. (1)

B conjugate gradient method: iterative method for
minimizing a quadratic function where its Hessian matrix
(matrix of second partial derivatives) is positive definite
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Results (1/2)

® n = 1055 largest cities in continental US
® ]ocal distances up to 18 neighbors within radius r = 0.09

® ]ocal measurements corrupted by 10% Gaussian noise over the
true local distance

m = 10 bottom eigenvectors of graph Laplacian

Result from SDP in (9) ~ 4s Result after conjugate gradient
3/21/2007 descent
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Results (2/2)

n = 20,000 uniformly sampled points inside the unit square
local distances up to 20 other nodes within radius r = 0.06
m = 10 bottom eigenvectors of graph Laplacian
19s to construct and solve the SDP

52s for 100 iterations in conjugate gradient descent

W T s N,

i S e 1 .'I_..ﬂ.:‘_

S Lok d

ground truth conjugate gradient with conjugate gradient with
SDP initialization random initialization
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® ]oss function 1n eq. (1) vs. number of eigenvectors
® computation time vs. number of eigenvectors

B “sweet spot” around m = 10 eigenvectors
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FastMVU on Robotics

® Control of a robot using sparse user input

® ¢.g. 2D mouse position

B Robot localization

" the robot’s location 1s inferred from the high
dimensional description of its state in terms of
sensorimotor mnput
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Conclusion

® Approach for inferring low dimensional
representations from local distance constraints

using MV U

® Use of matrix factorization computed from the
bottom eigenvectors of the graph Laplacian

B [ ocal search methods can refine solution

® Suitable for large input; its complexity does
not depend on the input!
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