
Graph Laplacian Graph Laplacian
Regularization for Large-Scale Regularization for Large-Scale

Semidefinite ProgrammingSemidefinite Programming

Kilian Weinberger et al.Kilian Weinberger et al.
NIPS 2006NIPS 2006

presented by Aggeliki Tsolipresented by Aggeliki Tsoli

3/21/2007 2

IntroductionIntroduction

 ProblemProblem
 discovery of low dimensional representations of high-discovery of low dimensional representations of high-

dimensional datadimensional data
 in many cases, local proximity measurements also availablein many cases, local proximity measurements also available
 e.g. computer vision, sensor localizatione.g. computer vision, sensor localization

 Current ApproachCurrent Approach
 semidefinite programs (SDPs) – convex optimizationsemidefinite programs (SDPs) – convex optimization
 Disadvantage: it doesn’t scale well for large inputsDisadvantage: it doesn’t scale well for large inputs

 Paper ContributionPaper Contribution
 method for solving method for solving very largevery large problems of the above type problems of the above type
 much smaller/faster SDPs than those previously studiedmuch smaller/faster SDPs than those previously studied

3/21/2007 3

Sensor localizationSensor localization
 Determine the 2D position of the sensors based on estimates of local Determine the 2D position of the sensors based on estimates of local

distances between neighboring sensors distances between neighboring sensors
 sensors i, j neighbors iff sufficiently close to estimate their pairwise distance via sensors i, j neighbors iff sufficiently close to estimate their pairwise distance via

limited-range radio transmissionlimited-range radio transmission
 InputInput::

 n sensorsn sensors
 ddijij : estimate of local distance between neighboring sensors i,j : estimate of local distance between neighboring sensors i,j

 OutputOutput::
 xx11, x, x22, … x, … xnn єє RR22 : planar coordinates of sensors : planar coordinates of sensors

3/21/2007 4

Work so far…Work so far…

 Minimize sum-of-squares loss function Minimize sum-of-squares loss function

 Centering constraint (assuming no sensor Centering constraint (assuming no sensor
location is known in advance)location is known in advance)

 Optimization in (1) non convexOptimization in (1) non convex
 Likely to be trapped in local minima ! Likely to be trapped in local minima !

(1)

(2)

3/21/2007 5

Convex OptimizationConvex Optimization
 Convex functionConvex function

 a real-valued a real-valued functionfunction ff defined on a defined on a domain C that domain C that for any for any
two points two points xx and and yy in in CC and any and any tt in [0,1], in [0,1],



 Convex optimizationConvex optimization

3/21/2007 6

Solution to convexitySolution to convexity

 Define n x n inner-product matrix XDefine n x n inner-product matrix X
 XXijij = x = xii · · xxjj

 Get convex optimization by relaxing the constraint that Get convex optimization by relaxing the constraint that
sensor locations xsensor locations xii lie in the R lie in the R22 plane plane

 xxii vectors will lie in a subspace with dimension equal vectors will lie in a subspace with dimension equal
to the rank of the solution Xto the rank of the solution X
 Project xProject xi i s into their 2D subspace of maximum variance to s into their 2D subspace of maximum variance to

get planar coordinates get planar coordinates

(3)

3/21/2007 7

Maximum Variance Unfolding (MVU)Maximum Variance Unfolding (MVU)

 The higher the rank of X, the greater the information loss after The higher the rank of X, the greater the information loss after
projectionprojection

 Add extra term to the loss function to favor solutions with high Add extra term to the loss function to favor solutions with high
variance (or high trace)variance (or high trace)

 trace of square matrix X (tr(X)): trace of square matrix X (tr(X)): sum of the elements on sum of the elements on X’s main X’s main
diagonal diagonal

 parameter v > 0 balances the trade-off between maximizing parameter v > 0 balances the trade-off between maximizing
variance and preserving local distances (variance and preserving local distances (maximum variance maximum variance
unfolding - MVUunfolding - MVU))

(4)

3/21/2007 8

Matrix factorization (1/2)Matrix factorization (1/2)
 G : neighborhood graph defined by the sensor networkG : neighborhood graph defined by the sensor network
 Assume location of sensors is a function defined over the nodes Assume location of sensors is a function defined over the nodes

of Gof G
 Functions on a graph can be approximated using eigenvectors of Functions on a graph can be approximated using eigenvectors of

graph’s Laplacian matrix as basis functions (spectral graph graph’s Laplacian matrix as basis functions (spectral graph
theory)theory)
 graph Laplacian l: graph Laplacian l:

 eigenvectors of graph Laplacian matrix ordered by smoothnesseigenvectors of graph Laplacian matrix ordered by smoothness
 Approximate sensors’ locations using the m bottom Approximate sensors’ locations using the m bottom

eigenvectors of the Laplacian matrix of Geigenvectors of the Laplacian matrix of G
 xxii ≈ ≈ ΣΣα=1α=1

m m QQiiααyyαα

 Q : n x m matrix with the m bottom eigenvectors of Laplacian matrix Q : n x m matrix with the m bottom eigenvectors of Laplacian matrix
(precomputed)(precomputed)

 yyαα : m x 1 vector , : m x 1 vector , α = α = 1, …, m (unknown)1, …, m (unknown)

3/21/2007 9

Matrix factorization (2/2)Matrix factorization (2/2)

 Define m x m inner-product matrix YDefine m x m inner-product matrix Y
 YYαβαβ = y = yαα · · yyββ

 Factorize matrix XFactorize matrix X
 X ≈ QYQX ≈ QYQTT

 Get equivalent optimizationGet equivalent optimization
 tr(Y) = tr(X), since Q stores mutually orthogonal eigenvectorstr(Y) = tr(X), since Q stores mutually orthogonal eigenvectors
 QYQQYQTT satisfies centering constraint (uniform eigenvector not included) satisfies centering constraint (uniform eigenvector not included)

 Instead of the n x n matrix X, optimization is solved for the Instead of the n x n matrix X, optimization is solved for the
much smaller m x m matrix Y !much smaller m x m matrix Y !

(5)

3/21/2007 10

Formulation as SDPFormulation as SDP
 Approach for large input problems: Approach for large input problems:

 cast the required optimization as SDP over small matrices with few cast the required optimization as SDP over small matrices with few
constraintsconstraints

 Rewrite the previous formula as an SDP in standard formRewrite the previous formula as an SDP in standard form
 єє m^2 m^2 : vector obtained by concatenating all the columns of Y: vector obtained by concatenating all the columns of Y
 AAєє m^2 x m^2 m^2 x m^2 : positive semidefinite matrix collecting all the quadratic : positive semidefinite matrix collecting all the quadratic

coefficients in the objective functioncoefficients in the objective function
 bbєє m2 m2 : vector collecting all the linear coefficients in the objective : vector collecting all the linear coefficients in the objective

functionfunction
 l l : lower bound on the quadratic piece of the objective function : lower bound on the quadratic piece of the objective function

 Use Schur’s lemma to express this bound as a linear matrix inequality Use Schur’s lemma to express this bound as a linear matrix inequality

(6)

3/21/2007 11

Formulation as SDPFormulation as SDP
 Approach for large input problems: Approach for large input problems:

 cast the required optimization as SDP over small matrices cast the required optimization as SDP over small matrices
with few constraintswith few constraints

 Unknown variablesUnknown variables: m(m+1)/2 elements of Y and : m(m+1)/2 elements of Y and
scalar scalar ll

 ConstraintsConstraints: positive semidefinite constraint on Y and : positive semidefinite constraint on Y and
linear matrix inequality of size mlinear matrix inequality of size m2 2 x mx m22

 The complexity of the SDP does not depend on the The complexity of the SDP does not depend on the
number of nodes (n) or edges in the networknumber of nodes (n) or edges in the network!!

(6)

3/21/2007 12

Gradient-based improvementGradient-based improvement

 2-step process (optional):2-step process (optional):
 Starting from the m-dimensional solution of eq. (6), Starting from the m-dimensional solution of eq. (6),

use conjugate gradient methods to maximize the use conjugate gradient methods to maximize the
objective function in eq. (4)objective function in eq. (4)

 Project the results from the previous step into the RProject the results from the previous step into the R22
plane and use conjugate gradient methods to plane and use conjugate gradient methods to
minimize the loss function in eq. (1)minimize the loss function in eq. (1)
 conjugate gradient methodconjugate gradient method: iterative method for : iterative method for

minimizing a quadratic function where its Hessian matrix minimizing a quadratic function where its Hessian matrix
(matrix of second partial derivatives) is positive definite(matrix of second partial derivatives) is positive definite

3/21/2007 13

Results (1/2)Results (1/2)
 n = 1055 largest cities in continental USn = 1055 largest cities in continental US
 local distances up to 18 neighbors within radius r = 0.09local distances up to 18 neighbors within radius r = 0.09
 local measurements corrupted by 10% Gaussian noise over the local measurements corrupted by 10% Gaussian noise over the

true local distancetrue local distance
 m = 10 bottom eigenvectors of graph Laplacianm = 10 bottom eigenvectors of graph Laplacian

Result from SDP in (9) ~ 4s Result after conjugate gradient
descent

3/21/2007 14

Results (2/2)Results (2/2)
 n = 20,000 uniformly sampled points inside the unit squaren = 20,000 uniformly sampled points inside the unit square
 local distances up to 20 other nodes within radius r = 0.06local distances up to 20 other nodes within radius r = 0.06
 m = 10 bottom eigenvectors of graph Laplacianm = 10 bottom eigenvectors of graph Laplacian
 19s to construct and solve the SDP19s to construct and solve the SDP
 52s for 100 iterations in conjugate gradient descent52s for 100 iterations in conjugate gradient descent

3/21/2007 15

Results (3/3)Results (3/3)

 loss function in eq. (1) vs. number of eigenvectorsloss function in eq. (1) vs. number of eigenvectors
 computation time vs. number of eigenvectorscomputation time vs. number of eigenvectors
 ““sweet spot” around m ≈ 10 eigenvectorssweet spot” around m ≈ 10 eigenvectors

3/21/2007 16

FastMVU on RoboticsFastMVU on Robotics

 Control of a robot using sparse user inputControl of a robot using sparse user input
 e.g. 2D mouse positione.g. 2D mouse position

 Robot localizationRobot localization
 the robot’s location is inferred from the high

dimensional description of its state in terms of
sensorimotor input

3/21/2007 17

ConclusionConclusion

 Approach for inferring low dimensional Approach for inferring low dimensional
representations from local distance constraints representations from local distance constraints
using MVUusing MVU

 Use of matrix factorization computed from the Use of matrix factorization computed from the
bottom eigenvectors of the graph Laplacianbottom eigenvectors of the graph Laplacian

 Local search methods can refine solutionLocal search methods can refine solution
 Suitable for large input; its complexity does Suitable for large input; its complexity does

not depend on the input!not depend on the input!

