Graph Laplacian Regularization for Large-Scale Semidefinite Programming

Kilian Weinberger et al.
NIPS 2006

presented by Aggeliki Tsoli
Introduction

- **Problem**
 - discovery of low dimensional representations of high-dimensional data
 - in many cases, local proximity measurements also available
 - e.g. computer vision, sensor localization

- **Current Approach**
 - semidefinite programs (SDPs) – convex optimization
 - Disadvantage: it doesn’t scale well for large inputs

- **Paper Contribution**
 - method for solving very large problems of the above type
 - much smaller/faster SDPs than those previously studied
Sensor localization

- Determine the 2D position of the sensors based on estimates of local distances between neighboring sensors
 - sensors i, j neighbors iff sufficiently close to estimate their pairwise distance via limited-range radio transmission

Input:
- n sensors
- \(d_{ij}\) : estimate of local distance between neighboring sensors i,j

Output:
- \(x_1, x_2, \ldots, x_n \in \mathbb{R}^2\) : planar coordinates of sensors
Work so far...

- Minimize sum-of-squares loss function
 \[
 \min_{\vec{x}_1, \ldots, \vec{x}_n} \sum_{i \sim j} \left(\| \vec{x}_i - \vec{x}_j \|^2 - d_{ij}^2 \right)^2
 \]
 (1)

- Centering constraint (assuming no sensor location is known in advance)
 \[
 \left\| \sum_i \vec{x}_i \right\|^2 = 0
 \]
 (2)

- Optimization in (1) non convex
 ➤ Likely to be trapped in local minima!
Convex Optimization

- **Convex function**
 - A real-valued function f defined on a domain C that for any two points x and y in C and any t in $[0,1]$,
 - $f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$

- **Convex optimization**

 Standard form is the usual and most intuitive form of describing a convex optimization problem. It consists of the following three parts:
 - A convex function $f_0(x) : \mathbb{R}^n \rightarrow \mathbb{R}$ to be minimized over the variable x
 - Inequality constraints of the form $f_i(x) \leq 0$, where the functions f_i are convex
 - Equality constraints of the form $h_i(x) = 0$, where the functions h_i are affine. In practice, the terminology "linear" and "affine" are generally equivalent and most often expressed in the form $Ax = b$, where A is a matrix and b is a vector.

 A convex optimization problem is thus written as
 minimize $f_0(x)$ subject to
 $f_i(x) \leq 0, \quad i = 1, \ldots, m$
 $h_i(x) = 0, \quad i = 1, \ldots, p$
Solution to convexity

- Define $n \times n$ inner-product matrix X
 - $X_{ij} = x_i \cdot x_j$

- Get convex optimization by relaxing the constraint that sensor locations x_i lie in the R^2 plane

\[
\text{Minimize: } \sum_{i \sim j} (X_{ii} - 2X_{ij} + X_{jj} - d_{ij}^2)^2 \\
\text{subject to: } (i) \sum_{ij} X_{ij} = 0 \text{ and } (ii) X \succeq 0.
\]

- x_i vectors will lie in a subspace with dimension equal to the rank of the solution X

 \Rightarrow Project x_i's into their 2D subspace of maximum variance to get planar coordinates
Maximum Variance Unfolding (MVU)

- The higher the rank of X, the greater the information loss after projection.
- Add extra term to the loss function to favor solutions with high variance (or high trace).

\[
\text{Maximize: } \quad \text{tr}(X) - \nu \sum_{i \sim j} (X_{ii} - 2X_{ij} + X_{jj} - d_{ij}^2)^2 \\
\text{subject to: } \quad (i) \sum_{ij} X_{ij} = 0 \quad \text{and} \quad (ii) \quad X \succeq 0.
\]

- **trace of square matrix** X ($\text{tr}(X)$): sum of the elements on X’s main diagonal.
- **parameter** $\nu > 0$ balances the trade-off between maximizing variance and preserving local distances (maximum variance unfolding - MVU).
Matrix factorization (1/2)

- G: neighborhood graph defined by the sensor network
- Assume location of sensors is a function defined over the nodes of G
- Functions on a graph can be approximated using eigenvectors of graph’s Laplacian matrix as basis functions (spectral graph theory)
 - Graph Laplacian \(L_{i,j} := \begin{cases} \text{deg}(v_i) & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and } v_i \text{ adjacent } v_j \\ 0 & \text{otherwise} \end{cases} \)
 - Eigenvectors of graph Laplacian matrix ordered by smoothness
- Approximate sensors’ locations using the m bottom eigenvectors of the Laplacian matrix of G
 - \(x_i \approx \sum_{\alpha=1}^{m} Q_{i\alpha} y_\alpha \)
 - Q: n x m matrix with the m bottom eigenvectors of Laplacian matrix (precomputed)
 - \(y_\alpha \): m x 1 vector, \(\alpha = 1, \ldots, m \) (unknown)
Matrix factorization (2/2)

- Define \(m \times m \) inner-product matrix \(Y \)
 - \(Y_{\alpha\beta} = y_\alpha \cdot y_\beta \)

- Factorize matrix \(X \)
 - \(X \approx QYQ^T \)

- Get equivalent optimization
 - \(\text{tr}(Y) = \text{tr}(X) \), since \(Q \) stores mutually orthogonal eigenvectors
 - \(QYQ^T \) satisfies centering constraint (uniform eigenvector not included)

Maximize:
\[
\text{tr}(Y) - \nu \sum_{i \sim j} \left[(QYQ^T)_{ii} - 2(QYQ^T)_{ij} + (QYQ^T)_{jj} - d_{ij}^2 \right]^2
\]
subject to: \(Y \geq 0 \)

- Instead of the \(n \times n \) matrix \(X \), optimization is solved for the much smaller \(m \times m \) matrix \(Y \)!
Formulation as SDP

- **Approach for large input problems:**
 - cast the required optimization as SDP over small matrices with few constraints

- **Rewrite the previous formula as an SDP in standard form**
 - \(\epsilon \in \mathbb{R}^{m^2} \): vector obtained by concatenating all the columns of \(Y \)
 - \(A \in \mathbb{R}^{m^2 \times m^2} \): positive semidefinite matrix collecting all the quadratic coefficients in the objective function
 - \(b \in \mathbb{R}^{m^2} \): vector collecting all the linear coefficients in the objective function
 - \(l \): lower bound on the quadratic piece of the objective function
 - Use Schur’s lemma to express this bound as a linear matrix inequality

\[
\begin{align*}
\text{Maximize:} & \quad b^\top Y - l \\
\text{subject to:} & \quad (i) \ Y \succeq 0 \quad \text{and} \quad (ii) \begin{bmatrix} I & A^{1/2}Y \\ (A^{1/2}Y)^\top & \ell \end{bmatrix} \succeq 0.
\end{align*}
\]
Formulation as SDP

- **Approach for large input problems:**
 - cast the required optimization as SDP over small matrices with few constraints

\[
\begin{align*}
\text{Maximize:} & \quad b^T Y - \ell \\
\text{subject to:} & \quad (i) \ Y \succeq 0 \quad \text{and} \quad (ii) \ \begin{bmatrix} I & \frac{1}{2} A^{\frac{1}{2}} Y \\ (A^{\frac{1}{2}} Y)^T & \ell \end{bmatrix} \succeq 0.
\end{align*}
\]

- **Unknown variables:** $m(m+1)/2$ elements of Y and scalar l

- **Constraints:** positive semidefinite constraint on Y and linear matrix inequality of size $m^2 \times m^2$

- **The complexity of the SDP does not depend on the number of nodes (n) or edges in the network!**
Gradient-based improvement

2-step process (optional):

- Starting from the m-dimensional solution of eq. (6), use conjugate gradient methods to maximize the objective function in eq. (4)

- Project the results from the previous step into the \mathbb{R}^2 plane and use conjugate gradient methods to minimize the loss function in eq. (1)

- **conjugate gradient method**: iterative method for minimizing a quadratic function where its Hessian matrix (matrix of second partial derivatives) is positive definite
Results (1/2)

- \(n = 1055 \) largest cities in continental US
- local distances up to 18 neighbors within radius \(r = 0.09 \)
- local measurements corrupted by 10% Gaussian noise over the true local distance
- \(m = 10 \) bottom eigenvectors of graph Laplacian

Result from SDP in (9) \(\sim 4s \)

Result after conjugate gradient descent
Results (2/2)

- $n = 20,000$ uniformly sampled points inside the unit square
- Local distances up to 20 other nodes within radius $r = 0.06$
- $m = 10$ bottom eigenvectors of graph Laplacian
- 19s to construct and solve the SDP
- 52s for 100 iterations in conjugate gradient descent
Results (3/3)

- Loss function in eq. (1) vs. number of eigenvectors
- Computation time vs. number of eigenvectors
- "Sweet spot" around $m \approx 10$ eigenvectors
FastMVU on Robotics

- Control of a robot using sparse user input
 - e.g. 2D mouse position

- Robot localization
 - the robot’s location is inferred from the high dimensional description of its state in terms of sensorimotor input
Conclusion

- Approach for inferring low dimensional representations from local distance constraints using MVU
- Use of matrix factorization computed from the bottom eigenvectors of the graph Laplacian
- Local search methods can refine solution
- Suitable for large input; its complexity does not depend on the input!