Mesh-Based Content Routing Using XML

Alex C. Snoeren, Kenneth Conley, and David K. Gifford
MIT Laboratory for Computer Science

Presented by: Jie Mao
CS295-1 Fall 2005

Outline
- Introduction
- Resilient mesh networks
- Algorithms and protocols
- Evaluation
- Conclusion

Motivation
- Mesh-based overlay networks
- Reliable multicasting
- Content-based routing
- Time-critical data transmission
- Heterogeneous clients
Motivation

- Question:
 - How to achieve low latency while reliably distribute data streams? – packet loss-recovery mechanism

- Assumption
 - The increased transport costs can be justified by the value of reliable and timely data delivery

- Approach
 - Loss-tolerant encoding – packet diversity
 - Channel diversity
 - Sender diversity

Basic Idea

- Construct an acyclic (n-1) resilient content distribution mesh - n is configurable
- Distributed publish-subscribe network comprised of XML routers
- An overlay network that transports XML streams
- Clients join network by specifying an XML query that describes the XML packets they want to receive

Why XML?

- Advantages
 - Interpretation of client data needs in terms of well-defined XML queries
 - Aid network scheduling
 - Tools and standards make robust applications
 - In-network processing

- Is increased data volume a disadvantage?
 - No. Data compression eliminates it

Contributions

- XML Routing
 - Support arbitrary content routing

- Mesh-based Overlay Network
 - Multiple redundant paths
 - Better latency performance than tree-based approach

- Diversity Control Protocol
 - Source-independent sequence number
 - Reduces latency and improves reliability
Outline

- Introduction
- Resilient mesh networks
 - Mesh network components
 - Router content configuration
 - Clients join
- Algorithms and protocols
- Evaluation
- Conclusion

Mesh network components

- Root routers
- Internal routers
- Clients
- XML Combining routers
 - Merge XML feeds from different sources into a single feed

Router Content Configuration

- Static configuration
 - Internal routers carry all of the XML packets
 - Clients have wider choice of routers to be their parents
 - Requires fixed bandwidth capacity throughout the mesh

Router Content Configuration

- Dynamic configuration
 - Routers only carry packet stream to service their children
 - Routers forward combined queries to its parents
 - Bandwidth saving for partial interests
 - Latency for mesh construction and repair
Client Joining
- Composing an XML query
- Contacting n existing routers
 - Router discovery? – explained later
- Sending XML query
- Receiving XML stream

Outline
- Introduction
- Resilient mesh networks
 - Algorithms and protocols
 - XML router core
 - Diversity control protocol (DCP)
 - Mesh formation and maintenance
- Evaluation
- Conclusion

XML Router Core
- Input component
 - Maintaining DCP connections
 - Mesh initialization and reconfiguration algorithms
 - Data decompression
 - TCP compatibility

XML Router Core
- XML switch
 - Matching packets to queries
 - Forwarding packets to questing links
 - Efficient state machine
XML Router Core

- Output component
 - Forwarding packets using DCP
 - Handling join requests
 - Link-based data compression
 - TCP compatibility

Diversity Control Protocol (DCP)

- Same stream of packets is sent to receiver by multiple sources
- Receiver can reassemble a packet stream from diverse senders using the first error-free packet received from any source.

DCP Sequencing

- Requirements for in-order packet stream reassembly
 - A total ordering of packet identifiers
 - Packet identifiers only associate with packet content, not be sender specific
 - Packet identifiers must be selected at root routers and remain identifiable throughout the mesh
 - Receiver identifier processing must admit gaps

DCP Sequencing

- Sequence Number
 - Monotonically increasing 32-bit application serial number (AN)
 - DCP packet header

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

AN: Address Number
DCP is reliable

- Retransmission
 - Packets are buffered and transmitted in-order
 - Receiver discards or buffers packets by current AN
 - Send negative acknowledgment (NACK) with current AN
 - Positive acknowledgment with current AN
 - Requested at each hop
 - NACK implosion problem? – Not likely

Mesh formation and maintenance

- Adding routers and clients
 - Mesh primitives
 - Join(Q), Children(Q), Parents
 - Automatic parent selection for (n-1) resilience
 - S = set of root routers
 - For each node in S, send a join request and remove the node from S
 - If a node accept the join, add it to the parent set P. If n nodes are in P, quit
 - If a node declines the join, ask it for a list of its children, and add them into S
 - If S is not empty, go to Step 2

Mesh formation and maintenance

- Mesh repair
 - A node actively joins a new parent when one of its parents fails
 - Acyclic mesh – router’s level number
 - Cold re-initialization

Outline

- Introduction
- Resilient mesh networks
- Algorithms and protocols
- Evaluation
 - DCP performance
 - XML routing performance
 - Experience with air traffic control data
- Conclusion
DCP performance

- Two XML router implementation
 - Full-featured, multi-threaded Java implementation
 - High-performance prototype based on Click
- Experimental design
 - Four machines, 2 Linux, 2 FreeBSD
 - Each node requests the entire set of XML stream
 - Emulation of link loss

DCP performance

- Redundancy reduces loss exponentially

DCP performance

- Latency

XML routing performance

- Dual processors
- 100Mb Ethernet
- 1000Mb Ethernet
- 262-byte packets
Experience with air traffic control data

- Aircraft Situational Display to Industry (ASDI)
- ASDI format and XML format
 - ASDI Format:
 - 153014022245CCZVTZ UAL1021 512 290 4928N/12003W

Experience with air traffic control data

- ASDI format and XML format
 - XML Format:
 - \(<xml version="1.0"/>\>
 - \(<messageid>153014022245CCZVTZ</messageid>\>
 - \(<flight>\>
 - \(<id>UAL1021</id>\>
 - \(<flightleg status="active">\>
 - \(<speed type="ground">512</speed>\>
 - \(<altitude type="reported" mode="plain">290</altitude>\>
 - \(<coordinate>\>
 - \(<lat>4928N</lat>\>
 - \(<lon>12003W</lon>\>
 - \(<flightleg/>\>
 - \(<flight/>\>

Outline

- Introduction
- Resilient mesh networks
- Algorithms and protocols
- Evaluation
- Conclusion
Conclusion

- Three key ideas
 - XML router
 - Resilient overlay network
 - Diversity communication protocol

Future work

- Protocol refinement
- Additional functionality
- DCP self-tuning
- XML router extensions

Questions?