Sensor Networks: Evolution, Opportunities, and Challenges

C. Y. Chong and S. P. Kumar
Proceedings of the IEEE, 91, 8, 2003

Allison Lee
CS295-1 Sensor data management
October 12, 2005
Outline

- Why is sensor network exciting?
- Where did it come from?
 - History
 - Examples
- Problems and challenges
- Where is it going?
- Conclusions
Why is sensor network exciting?

- Business Week: one of the 21 most important technologies for the 21st century
- Sense, communicate, and compute
 - Things without our presence
- Monitor and gather information
 - In places not easily accessible
- Querying and tasking
 - Act on up-to-date data to develop timely new strategies
- Networked sensors deployed all around the world
 - Controlling homes, cities, and the environment
Attributes of sensor networks

| Sensors | Size: small (e.g., micro-electro mechanical systems (MEMS)), large (e.g., radars, satellites)
| | Number: small, large
| | Type: passive (e.g., acoustic, seismic, video, IR, magnetic), active (e.g., radar, ladar)
| | Composition or mix: homogeneous (same types of sensors), heterogeneous (different types of sensors)
| | Spatial coverage: dense, sparse
| | Deployment: fixed and planned (e.g., factory networks), ad hoc (e.g., air-dropped)
| | Dynamics: stationary (e.g., seismic sensors), mobile (e.g., on robot vehicles) |
| Sensing entities of interest | Extent: distributed (e.g., environmental monitoring), localized (e.g., target tracking)
| | Mobility: static, dynamic
| | Nature: cooperative (e.g., air traffic control), non-cooperative (e.g., military targets) |
| Operating environment | Benign (factory floor), adverse (battlefield) |
| Communication | Networking: wired, wireless
	Bandwidth: high, low
Processing architecture	Centralized (all data sent to central site), distributed (located at sensor or other sites), hybrid
Energy availability	Constrained (e.g., in small sensors), unconstrained (e.g., in large sensors)
Versatility of sensor networks

- Military sensing
- Physical security
- Video surveillance
- Distributed robotics
- Environmental monitoring
- Traffic control and surveillance
- Building and structures monitoring
- Industrial and manufacturing automation
Where did it come from?

- Cold War
 - SOSUS (Sound Surveillance System) – acoustic sensors
 - Detect quiet Soviet submarines
 - Monitor events in the ocean (e.g., seismic and animal activity)
 - Marine Mammal Sounds
 - Atlantic blue whale call 🎵
 - South Pacific blue whale call 🎵
Where did it come from? (cont.)

- Deep Ocean Seismicity from Hydroacoustic Monitoring
 - earthquake swarm occurred overnight on NE Pacific Endeavour Ridge (2/27/05)
 - maps showing the location of the Endeavour earthquake swarm

[Image of map showing earthquake location]
History

- Early research
 - Adopt a hierarchical processing structure, information processed in a consecutive order
 - Human operators needed
- 20th century
 - DSN (Distributed Sensor Networks)
 - Provide a network allows flexible and transparent access
 - Network-centric warfare by CCRP (Command and Control Research Program)
 - Information sharing and collaboration among sensors
 - Enables self-synchronization
 - Increase robustness of sensor networks
- 21st century
 - SensIT (Sensor Information Technology) by DARPA (Defense Advanced Research Projects Agency)
 - Suitable for highly dynamic ad hoc environments
 - Provide reliable and timely information
Three Generations of Sensor Nodes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Custom contractors, e.g., for TRSS</td>
<td>Commercial: Crossbow Technology, Inc. Sensoria Corp., Ember Corp.</td>
<td>Dust, Inc. and others to be formed</td>
</tr>
<tr>
<td>Size</td>
<td>Large shoe box and up</td>
<td>Pack of cards to small shoe box</td>
<td>Dust particle</td>
</tr>
<tr>
<td>Weight</td>
<td>Kilograms</td>
<td>Grams</td>
<td>Negligible</td>
</tr>
<tr>
<td>Node architecture</td>
<td>Separate sensing, processing and communication</td>
<td>Integrated sensing, processing and communication</td>
<td>Integrated sensing, processing and communication</td>
</tr>
<tr>
<td>Topology</td>
<td>Point-to-point, star</td>
<td>Client server, peer to peer</td>
<td>Peer to peer</td>
</tr>
<tr>
<td>Power supply lifetime</td>
<td>Large batteries; hours, days and longer</td>
<td>AA batteries; days to weeks</td>
<td>Solar; months to years</td>
</tr>
<tr>
<td>Deployment</td>
<td>Vehicle-placed or air-drop single sensors</td>
<td>Hand-emplaced</td>
<td>Embedded, “sprinkled” left-behind</td>
</tr>
</tbody>
</table>

Image:
- TRSS Node
- Crossbow
- Ember
- Sensoria
- Dust, Inc.
Applications

Infrastructure Security

- Networks of sensors deployed around facilities
- Detection and tracking of possible threats
- Early warnings and rapid coordinated responses to potential threats
- Example: Livermore National Laboratory
 - correlated sensor networks can communicate with each other to ignore false alarms and detect signal not quite at threshold by correlating spatial and temporal information from other sensors
 - independent sensors do not have temporal information to discriminate false alarms
More recent applications

- Distributed tracking in wireless ad hoc networks
 - IDSQ (information-driven sensor querying)
 - Each sensor
 - Computes the predicted information of a piece of nonlocal sensor data
 - Determine from which sensor to request data
 - Manage resource constraints
 - Decrease cost of transmitting information

Source tracking in a large-scale sensor network via computations over a sequence of subnetworks formed by the detecting nodes in the vicinity of the source.
Environment and habitat Monitoring

SIVAM (System for the Vigilance of the Amazon)
- Provides large scale electronic surveillance of Brazil's immense and relatively undeveloped Amazon region
- A suite of sensors provides data to
 - Three regional operations centers
 - One national operations center
 - Air surveillance center
 - ALL NETWORKED TOGETHER

Sensors
- Radar (aircraft), satellite imagery (space), environmental sensors (ground)
Applications (cont.)

SIVAM (cont.)

- Goals
 - Prevention and control of epidemics
 - Environmental protection
 - Control of land occupation and use
 - Economical and ecological zoning
 - Mapping
 - Protection of indigenous populations
 - Border surveillance and control
 - Monitoring river navigation
 - Monitoring forest fires
 - Law enforcement/ drug trafficking
 - Air traffic control and surveillance for both cooperative and non-cooperative aircraft
Other examples of sensor networks

- Industrial sensing
 - Access regions inaccessible by humans
 - Monitor machine health

- Spectral sensors
 - Sensors acquire spectra as data
 - Environmental sensing (electromagnetic spectrum)
 - To monitor the atmosphere (e.g., greenhouse effect)
Hard problems and challenges

- **Sensors networks**
 - Uncertain and dynamic environment
 - Energy and bandwidth constraints
 - Problems in communication, sensor management, and data processing

- **Ad hoc network discovery**
 - Network topology constructed in real time
 - Adapt to unpredictable environment
 - Know the identity and location of neighbors
 - Know self location
Hard problems and challenges (cont.)

- Network control and routing
 - Developing self-configuring network system
 - Deal with changing resource requirements and adapt routing dynamically
 - Provide adequate survival of the network in a changing environment
 - Balance the tradeoffs between latency, reliability, and energy
Hard problems and challenges (cont.)

- Collaborative signal and information processing (balance)
 - Performance vs. resource utilization
 - More sensors processing data, better performance, but use more communication resources (i.e. energy)

- Performance vs. robustness
 - Design desired algorithm to achieve robustness
 - E.g., highly accurate or fail-safe results
 - Without sacrificing performance
Hard problems and challenges (cont.)

Tasking and querying
- In sensor network, the data is constantly being acquired, updated, lost and then reacquired
- Traditional database style querying may not be adequate
- Need a flexible, reliable, and simple interface to query and task the system that account for changes in the sensor network in a timely fashion

Security
- Utmost concern in nearly all applications of sensor network
- Protect military intelligence or privacy
- Need to be survivable, protected against intrusion and spoofing
- Not easily detectable by enemies or hackers
Where is it going?

- Smaller and cheaper sensors, more capable and versatile (to nanobots?)
- More advanced wireless networks
 - IEEE 802.15 standard
 - Low energy and high bandwidth
 - Low cost sensor nets
 - Deployed in large numbers
 - Provide a standard way for communication
- Highly dynamic ad hoc environment
 - Dynamic and interactive querying and tasking
- Wireless network of ubiquitous low-cost disposable microsensors
 - Smart dust
Conclusions

Sensor Networks

- Exciting emerging field
- Applications limited only by imagination
- Can affect all aspects of human life
 - Networks of small, possibly microscopic sensors embedded everywhere, even on people
 - Perform automated continual and discrete monitoring and tasks
- Ethical considerations may become important as sensor networks become ubiquitous and invade privacy
References

- http://www.businessweek.com/magazine/content/03_34/b3846622.htm

D. Jensen, SIVAM: Communication, navigation and surveillance for the Amazon, Avionics Mag, June, 2002.

IEEE 802.15 Working Group for WPAN [online] Available: http://grouper.ieee.org/groups/802/15/

T. Pham and H. C. Papadopoulos, Distributed tracking in ad-hoc sensor networks, IEEE Workshop on Statistical Signal Processing, July 2005
Thank you!