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What is Quantum Computation

It is very different kind of computation that depends on certain very
special transformations of the internal state of a system.

The physical systems that encode quantum information must be isolated
from destructive external influences, called “decoherence.”

Computation is done at the atomistic scale where the differences in
energy levels is much larger than at the macroscopic level.

Error correction is possible but must be done without knowing the
original or corrupted state of the system.

Not at all clear that quantum computation will be practical in our
lifetimes. Nonetheless, the unusual nature of such computation makes it
very much worth studying.
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Classical Versus Quantum Computation

Classical Quantum

Data Cbit Qbit

Computing Elements Gates Unitary transformations

Outputs Gate values Measurements
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Classical State

• State is linear combination of orthogonal functions. We use “ket”

notation to represent binary data |0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

. Classically,

these are Cbits.

• Tensor notation used to represent k-tuple state.

|01〉 = |0〉 ⊗ |1〉 =

(

1
0

)

⊗
(

0
1

)

=









0
1
0
0









.
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Tensor Notation

•
(

x0

x1

)

⊗
(

y0
y1

)

⊗
(

z0
z1

)

=

























x0y0z0
x0y0z1
x0y1z0
x0y1z1
x1y0z0
x1y0z1
x1y1z0
x1y1z1

























.

E.g. |1〉 |0〉 |1〉 = |101〉 = |5〉3 = (00000100)T , a 1 in 5th position.

• The subscript 3 on |5〉3 indicates that 5 is represented by 3 bits.
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Classical Computation

• Observation of a classical state component (bit) does not change its
value.

– Classical states are robust.

• Computations can be analog or discrete but are assumed deterministic,
i.e. they are predictable from inputs.
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Reversible and Irreversible Computation

• Quantum computations, transformations of state, are reversible.

• Most classical computations are irreversible, e.g. erase sets a bit to 0,
and combines two values to one value.

• not, denoted by operator X, is reversible.

X : |x〉 7→ |x̃〉 ; 1̃ = 0, 0̃ = 1

Let X =

(

0 1
1 0

)

and 1 =

(

1 0
0 1

)

. Then X

(

1
0

)

=

(

0
1

)

,

X

(

0
1

)

=

(

1
0

)

, and X2 = 1.
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Swap – A Reversible Operation on Multiple Bits

• Swap i and j, Sij, interchanges states of Cbits i and j. S10 |xy〉 = |yx〉
exchanges |01〉 = |1〉2 and |10〉 = |2〉2 but leaves |00〉 = |0〉2 and
|11〉 = |3〉2 unchanged. Thus,

S10 = S10 =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
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Control-NOT (c-NOT) – A Reversible Operation

• Control-NOT, Cij, flips the value of the jth target bit if the ith control

bit has value |1〉 but leaves it unchanged if the control bit is |0〉.

C10 |x〉 |y〉 = |x〉 |y ⊕ x〉 ; C01 |x〉 |y〉 = |x⊕ y〉 |y〉
⊕ is addition modulo-two. C10 has no effect on |00〉 = |0〉2 or |01〉 = |1〉2
but changes |10〉 = |2〉2 to |3〉2 and |11〉 = |3〉2 to |2〉2. Thus,

C10 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









, C01 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
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Reversible 2-Cbit Tensor Operators

• It is common to form a 2-Cbit operator through the tensor product of
two 1-Cbit operators.

(a ⊗ b) |xy〉 = (a ⊗ b)(|x〉 ⊗ |y〉) = a |x〉 ⊗ b |y〉

Let 1 a 1 b denote that b is applied to the rightmost (zeroth) Cbit and
a to the third Cbit from the right. The shorthand for this is a2 b0.
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Qbits and Their States

• Cbits have two possible states, the two orthonormal vectors |0〉 and |1〉.

• Qbits have have an uncountable number of states. The state |ψ〉 of a
Qbit is a unit vector that is the complex combination (superposition)
of |0〉 and |1〉, two orthonormal vectors, via complex numbers α0 and α1

(amplitudes) satisfying |α0|2 + |α1|2 = 1. (|ψ〉 lies on Bloch sphere.)

|ψ〉 = α0 |0〉 + α1 |1〉

Note: α = u + iv is a complex number where u and v are reals and
i =

√
−1. The complex conjugate of α is α† = u − iv. Its magnitude

square is αα† = |α|2 = u2 + v2.
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Comments on Quantum States

• Qbits don’t have values but they are associated with states. A Qbit can
have state |0〉 or |1〉 but which is not known until a measurement is
made. (More on this later.)

• The state of two Qbits is the superposition of four orthogonal states

|ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉

where |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

• n Qbits have state |ψ〉 =
∑

0≤x<2n αx |x〉n where
∑

0≤x<2n |αx|2 = 1.
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Entanglement of Qbits

• Let |ψ〉 = µ0 |0〉 + µ1 |1〉 and |φ〉 = β0 |0〉 + β1 |1〉 be two Qbits. Their
tensor product |Ψ〉 = |ψ〉 ⊗ |φ〉 is given below. This state is separable.

|Ψ〉 = (µ0 |0〉 + µ1 |1〉) ⊗ (β0 |0〉 + β1 |1〉)
= µ0β0 |00〉 + µ0β1 |01〉 + µ1β0 |10〉 + µ1β1 |11〉

Comparing this expansion with one in previous slide, we have that
α00 = µ0β0, α01 = µ0β1, α10 = µ1β0, and α11 = µ1β1. Clearly,
α00α11 = α10α01. Because this constraint is not generally satisfied by
a 2-Qbit system, it follows that such a system is different from the
composition of two 1-Qbit systems.

The states of the Qbits in the 2-Qbit system are entangled.
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Quantum Observation

• Observation of a quantum state components collapses the state to a
classical state, that is, to one of the orthonormal vectors.

• An observation probabilistically samples the quantum state.

– Observations at different times are likely to yield different results.
– Frequency of outcomes is determined by state amplitudes.

• An observation of a quantum state |ψ〉 =
∑

0≤x<2n αx |x〉 produces a

single classical state |y〉. State |y〉 occurs with probability |αy|2.
– Quantum states are fragile; contact with the outside world represents

an observation. Unwanted measurements are called decoherence.
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Correlation Between Quantum States

• Consider the Bell or EPR state |φ〉 = |00〉+|11〉√
2

. (It is involved in quantum

teleportation.)

• Measurement of the first Qbit reveals that the basis state is |00〉 or |11〉.
Whatever the outcome, the measurement of the second Qbit will give
the same result as the measurement of the first Qbit.

• This exercise demonstrates that quantum states exhibit correlation. Bell
has shown that this measurement correlation is stronger than can be
found in classical systems.

• This does not imply communication faster than light because it does not
imply that one observer knows when the other makes a measurement.
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Quantum Computations

• All quantum computations are represented by linear
transformations of quantum states |ψ〉 = U |φ〉.
– If non-linear operations were possible, time travel would be possible

and the second law of thermodynamics would not hold.

• The operation U |φ〉 maps the underlying orthonormal basis used in |φ〉
to a new basis.
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Dirac Notation

• |x〉 is called “ket” and denotes a column vector.

• 〈x| is called “bra” and denotes a row vector.

• The normalization condition
∑

0≤x<2n |αx|2 = 1 can be restated as

〈ψ†| |ψ〉 = 〈ψ†|ψ〉.

• Because the normalization condition 〈ψ†| |ψ〉〉 = 〈φ†|U †U |φ〉 = 1 must
hold, U must be unitary, that is, it must satisfy the property U †U = I
where U † is the complex transpose of U and I is the identity matrix.
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Evolution of Quantum State

• A quantum state evolves without change under an evolutionary
(unitary) operator and with change under an observable operator.

• An evolutionary operator transforms a state |φ〉 through multiplication
by a unitary linear operator U , i.e. U |φ〉.

• Because each unitary operator satisfies U †U = I, U−1 = U † is the
inverse of U . Thus, evolutionary computations are reversible.

– Input can be determined from output.
– To classically compute a function f(x) reversibly, compute (x, f(x)).
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Qbit Analogs of not

• not gate X =

[

0 1
1 0

]

.

– Input: α |0〉 + β |1〉; Output β |0〉 + α |1〉

• Z gate Z =

[

1 0
0 −1

]

.

– Input: α |0〉 + β |1〉; Output α |0〉 − β |1〉

• Hadamard gate H = 1√
2

[

1 1
1 −1

]

.

– Input: α |0〉 + β |1〉; Output α|0〉+|1〉√
2

+ β |0〉−|1〉√
2
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Quantum Observations

• A measurement produces a basis vector in an orthonormal system.
Since |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉) are orthonormal, a

measurement in this basis will produce a different value than one in the
basis (|0〉 , |1〉). Let |φ〉 = α |0〉 + β |1〉. Since

|φ〉 = α
|+〉 + |−〉√

2
+ β

|+〉 − |−〉√
2

=
α+ β√

2
|+〉 +

α− β√
2

|−〉

A measurement in the new basis produces |+〉 or |−〉 with probability
|α+ β|2/2 and |α− β|2/2, respectively.
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Qbit Analogs of exor Gate

y1 = x1 ⊕ x2

x2

x1

y2 = x2

H =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









The control-NOT gate

• The control-not is the quantum equivalent of the exor. exor does a
reversible computation, unlike nand. Wires model passage of time or
physical movement of a particle. Operations model interactions.

• The control-not maps inputs as follows:

|00〉 7→ |00〉 ; |01〉 7→ |01〉 ; |10〉 7→ |11〉 ; |11〉 7→ |10〉 ;

• Unitary matrix H provides another way to see the effect of this gate.
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Reversible Boolean Circuits

y1 = x1 ⊕ x2

x2

x1

y2 = x2

y1 = x1 ⊕ x2x3

x3

x2

x1

y3 = x3

y2 = x2

The control-NOT and control-control-NOT gates

• The control-NOT (c-NOT) and control-control-NOT (c-c-NOT) gates
are reversible. (Why?)

– c-c-NOT and constants 0, 1 form a universal basis for classical
Boolean reversible computation. (Why?)

– c-NOT and single Qbit gates form a universal basis for quantum
computation.

• Reversibility increases circuit size for f : {0, 1}n 7→ {0, 1} by O(nlog2 3).
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Example of a Reversible Circuit

a⊕ b⊕ c

aa

b

c

0

a⊕ b

ab⊕ (a⊕ b)cab

a

b

Feynam’s Full Adder

• The Full Adder output is a two-digit representation for the number of 1s
among three inputs, in this case a, b, and c.

• The least significant digit is a⊕b⊕c. The most significant is ab∨ac∨bc
which is equivalent to ab⊕ (a⊕ b)c.
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Example of a Quantum Computation

• Quantum parallelism allows for evaluation of a function at many different
points simultaneously. We illustrate for function f(x), x ∈ {0, 1}.

• Consider a two-Qbit quantum computer with state |x, y〉.
– Form the state |0, 0〉 = |0〉 × |0〉 by creating |0〉 and |0〉 in parallel.

– Use the Hadamard gate H = 1√
2

[

1 1
1 −1

]

on the first |0〉 to produce

the state (|0〉 + |1〉)/
√

2.
– The result is the state (|0〉 + |1〉)/

√
2 × |0〉.

• (|0〉 + |1〉)/
√

2 × |0〉 is separable.
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Quantum Computation of a Binary Function

• A reversible quantum computation of f : {0, 1}n 7→ {0, 1}m can be done
with an n-Qbit input state |x〉 and an m-Qbit output state |f(x)〉 via
the unitary operator Uf shown below.

Uf(|x〉n |y〉m) = |x〉n |y ⊕ f(x)〉m

Note that Uf is its own inverse, i.e. UfUf = 1.
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Superposition of all Basis States

• Given the tensor product of two Qbits, the following trick generates the
superposition of all 2-Qbit basis states.

(H ⊗ H)(|0〉 ⊗ |0〉) = H1H0 |0〉 |0〉 = (H |0〉)(H |0〉)

=
1√
2
(|0〉 + |1〉) 1√

2
(|0〉 + |1〉)

=
1

2
(|0〉 |0〉 + |0〉 |1〉 + |1〉 |0〉 + |1〉 |1〉)

=
1

2
(|0〉2 + |1〉2 + |2〉2 + |3〉2)
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Superposition of all Basis States

• Let H⊗n denote H ⊗ H ⊗ · · · ⊗ H, n times.

Uf(H
⊗n) |0〉n |0〉m =

1

2n/2

∑

0≤x<2n

Uf(|x〉n |0〉m)

=
1

2n/2

∑

0≤x<2n

|x〉n |f(x)〉m

This calculation exhibits quantum parallelism.
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Example of a Quantum Computation

• Build a circuit Uf that computes |x, y〉 7→ |x, y ⊕ f(x)〉.

• Let its inputs be x = (|0〉 + |1〉)/
√

2 and y = |0〉.

• Its output is |0,f(0)〉+|1,f(1)〉√
2

, which involves computing both f(0) and

f(1) simultaneously.

• When an observation is made, either |0, f(0)〉 or |1, f(1)〉 is produced
with probability 1/2. Thus, although both values of f(x) are computed
simultaneously, an observation doesn’t combine them.

• Deutch’s algorithm tells if f is a constant function or not. Classically
this requires two tests. Deutch’s algorithm does it with one query.
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Deutch’s Problem

• Given f : {0, 1} 7→ {0, 1}, is f(0) = f(1) or not? This takes two classical
measurements. It can be done with one quantum measurement.

• The four functions of this type are shown below where X is NOT, Cio is
c-NOT, and CioX0 denotes the application of X0 followed by Cio.

x = 0 x = 1
f0 0 0 Uf0 = 1
f1 0 1 Uf1 = Cio
f2 1 0 Uf0 = CioX0

f3 1 1 Uf0 = X0
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Deutch’s Algorithm

(H ⊗ H)(X ⊗ X)(|0〉 |0〉) = (H ⊗ H)(|1〉 |1〉)

= (
1√
2
(|0〉 − |1〉))( 1√

2
(|0〉 − |1〉))

=
1

2
(|0〉 |0〉 − |1〉 |0〉 − |0〉 |1〉 + |1〉 |1〉)

Applying Uf to this gives the following.

1

2
(Uf(|0〉 |0〉) − Uf(|1〉 |0〉) − Uf(|0〉 |1〉) + Uf(|1〉 |1〉))
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Deutch’s Algorithm

1

2
(Uf(|0〉 |0〉) − Uf(|1〉 |0〉) − Uf(|0〉 |1〉) + Uf(|1〉 |1〉))

=
1

2
(|0〉 |f(0)〉 − |1〉 |f(1)〉 − |0〉 |f̃(0)〉 + |1〉 |f̃(1)〉)

When f(0) = f(1) and f(0) 6= f(1) (which implies f(1) = f̃(0) and
f̃(1) = f(0)), we have the following where

f(0) = f(1) f(0) 6= f(1)
1
2(|0〉 − |1〉)(|f(0)〉 − |f̃(0)〉) 1

2(|0〉 + |1〉)(|f(0)〉 − |f̃(0)〉)
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Deutch’s Algorithm

Hx

y ⊕ f(x)

|ψ2〉 |ψ3〉

yH

H
x|1〉

|1〉

|ψ0〉 |ψ1〉

Uf

If we apply the Hadamard transform to the leftmost Qbit, we have
H(|0〉 − |1〉) = |0〉 and H(|0〉 + |1〉) = |1〉. The result is shown below.

(H ⊗ 1)Uf(H ⊗ H)(X ⊗ X)(|0〉 |0〉)

=

{

|1〉 1
2(|f(0)〉 − |f̃(0)〉), f(0) = f(1)

|0〉 1
2(|f(0)〉 − |f̃(0)〉), f(0) 6= f(1)
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Deutch’s Algorithm

Hx

y ⊕ f(x)

|ψ2〉 |ψ3〉

yH

H
x|1〉

|1〉

|ψ0〉 |ψ1〉

Uf

• Quantum computation has provided global information about f(x),
namely, f(0) ⊕ f(1), in one step, namely, the computation by Uf . Two
steps would be required by a classical computation.
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Solving Satisfiability or Unordered Search

• Problem: Given instance of satisfiability, find satisfying assignment
to the input variables. Classically it appears to take O(2n) time.

– Example (x̄1 + x3 + x̄4)(x2 + x̄3 + x4)(x1 + x̄2 + x̄4)

• The approach:

– Each assignment is given equal probability intially.
– An iterative algorithm due to Grover increases the probability of

the satisfying assignments while decreasing the probabibility of non-
satisfying assignments.

– When the probability of satisfying assignments is high, sample
the assignments. With high probability a satisfying assignment is
discovered.
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Factoring Integers

• Problem: Given an integer which is the product of two primes, find one
of the primes.

– 750,089 = 827*907

• Factorization is considered a difficult classical computation. If an effective
quantum factorization computer could be built, the RSA public key
encryption system would be undermined.

• The approach: Probabilistic quantum computation based on number
theory.
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Prospects for Quantum Computing

• Quantum computing requires that the state of Qbits be maintained for a
long enough for a computation to complete. If a quantum states comes
in connect with the external environment, an observation occurs and
the quantum state is changed. Unfortunately, it is extremely difficult to
maintain quantum state coherence for more than very short periods of
time. Given that a substantial amount of time is needed to set up the
superposition of Qbits, quantum computing may be infeasible in practice.

• Only a few problems have been exhibited for which quantum computation
offers an advantage, although an effective quantum factorization
algorithm could invalidate the RSA algorithm.
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