Fall Semester 2007

CSCI 2570 - Introduction to Nanocomputing

Assignment 04
Due: Thursday, October 11, 2007

1 Problem 1

Compute directly or estimate the probability that an integer chosen uniformly at random from the range $\left[1,10^{9}\right]$ is divisible by at least one of 4,6 , and 7 .

Hint: If you choose to estimte the probability, consider using the principle of Inclusion-Exclusion.

2 Problem 2

Suppose you are one of four finalists for the best-paper award at a conference. The decision has been made but the results have not been announced. You don't know anything about the relative quality of the submissions, so you rightly suppose each finalist has a priori probability $1 / 4$ of winning. You are friends with the conference chair, but he/she refuses to tell you who won. Persistent, you point out that at least 2 of the other three did not win, so you ask the chair to name a person who lost, picking randomly among the losers other than you, if you were a loser. The chair agrees and names someone who lost.

- Given the new information, has your chance of winning gone up to $1 / 3$?
- Suppose you know one of the other finalists, Alice. If the chair points to a loser other than Alice, has her probability of winning gone up to $3 / 8$?

Hint: Construct two sample spaces, one for the outcome before the chair provides information and a second that incorporates both the original outcome and the information from the chair.

3 Problem 3

Consider an $(n, k, d)_{2}$ error-correcting code with k information bits and block length n and minimum distance d, d odd. It follows that if at most $(d-1) / 2$ errors occur in transmission, the transmitted codeword can be reconstructed. Prove that any $(n, k, d)_{2}$ code must satisfy:

$$
\frac{k}{n} \leq 1-H\left(\frac{d-1}{2 n}\right)+o(1)
$$

(Compare to the $1-H(p)$ bound for noisy binary symmetric channel capacity.) By " $+o(1)$ ", we mean there exists a function $f(n, k, d)$ such that f goes to zero as $\min (n, k, d)$ goes to infinity.

To obtain this result show that $\log \binom{n}{r}=n H(r / n)-O(\log n)$. Hint:

- Consider using the sphere-packing argument.
- You may use Sterling's formula, namely, $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}(1+O(1 / n))$

