
1

Complexity Classes IV

NP Optimization Problems and
Probabilistically Checkable Proofs

Eric Rachlin

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 2

Decision vs. Optimization
 Most complexity classes are defined in terms

of Yes/No questions.
 In the case of NP, we wish to know if a

certificate exists that satisfies certain
constraints (i.e. SAT, vertex cover, clique, …)

 Even if no certificate exists, we can still ask
how many constraints can be satisfied, or
how large (or small) some parameter can be.

 We let OPT to denote this value.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 3

Decision vs. Optimization

 With respect to polynomial time, optimization
is no harder than decision

 Example: MAXCLIQUE (perform binary
search over instances of CLIQUE)

 Example: MAXSAT (perform binary search
using a variant of SAT that asks if k clauses
can be satisfied)

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 4

Approximation Algorithms
 If P ≠ NP, we cannot find OPT for an NP-complete

optimization problem in polynomial time (PTIME).
 In practice, we may not need an exact answer

(particularly if the parameters of the problem are
themselves estimates).

 An approximation algorithm computes OPT’ such
that |OPT - OPT’| ≤ f(OPT) for some f.

 For NP-complete problems, can f(OPT) be arbitrarily
small?

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 5

What can we hope for?
 A Polynomial Time Approximation

Scheme (PTAS) for an optimization problem
is an algorithm that, for a given ε, results in a
PTIME approximation algorithm such that
|OPT - OPT’| ≤ εOPT.

 The approximation algorithm can still have a
runtime that is exponential in 1/ε.

 Efficient Polynomial Time Approximation
Scheme (EPTAS) adds the requirement that
the runtime be of the form f(ε)*poly(N).

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 6

How good is too good?

 A Fully Polynomial Time Approximation
Scheme (FPTAS) is PTAS where the
running time of the approximation algorithm
is also polynomial in 1/ε.

 It is not hard to show that an FPTAS for
some NP-complete problems implies P = NP.

 It turns out the same is true for a PTAS, but
this is far from obvious. It is a consequence
of the PCP Theorem.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 7

Strongly NP-Hard Problems

 A problem is strongly NP-hard if its NP-
hardness does not require any of its
numerical parameters to be exponential in
the length of the problem.

 Examples: CLIQUE, TSP, SAT, …
 If an FPTAS exists for CLIQUE, we can

approximate the solution to a factor less than
1/N and obtain an exact solution.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 8

Hardness of Approximation

 Do PTASs exist for strongly NP-hard
problems?
 Yes!
 Examples: Planar TSP, Euclidian TSP

 How can we show a PTAS does not exist for
certain NP-complete problems?
 Define NP in terms of PCPs…
 …this leads to a gap introducing reduction…
 …which leads to gap preserving reductions.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 9

Reductions and NP

 Recall Cook’s Theorem (1971):
 SAT is NP-Complete
 The “tableau” of a nondeterminstic Turing

machine can be converted to an instance of SAT.
 The instance of SAT is polynomial in the size of

the tableau, and is satisfied if and only in the
tableau accepts (and is valid).

 SAT was then reduced to other NP-complete
problems (Karp, 1972).

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 10

More on Cook’s Theorem

 It is easy to show that the following language,
ACCEPT, is NP-complete:
 Let <M, x, 1t> be a triple consisting of a deterministic

Turing machine, a binary input to M, and a string of t 1’s.
 <M, x, 1t> is in the language if M accepts some string of the

form <x, y> in at most t steps. (Here y represents a
certificate of length at most t.)

 To prove Cook’s Theorem, give a polynomial time
algorithm that designs a circuit outputting 1 if and
only if M accepts <x, y> after t steps.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 11

So what needs work?

 In Cook’s Theorem, the instance of SAT is
satisfiable iff the nondeterministic Turing
machine accepts after poly(N) steps.

 Even when it does not accept, the instance of
SAT is still “almost” satisfiable.

 We want to introduce a gap.
 Either the instances of SAT are satisfiable,
 Or some fixed fraction of clauses are unsatisfied

by any assignment of values to variables.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 12

Gap Introducing Reduction
 Let x be an instance of some NP-complete

decision problem L, let L(x) denote Is x in L?
 Let MAXL(x) be the corresponding

optimization problem.
 A polynomial time (PTIME) reduction from L

to L’ is some PTIME function, R, such that
L’(R(x)) = L(x).

 R is gap introducing if, for all L(x) = 1 and
L(y) = 0, MAXL’(R(x))/MAXL’(R(y)) ≥ ∆.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 13

Gap Preserving Reductions
 If L is NP-complete, L’ is in NP, and R(x) is a PTIME

gap introducing reduction from L to L’:
 L’ is NP-complete
 MAXL’ is inapproximable to within a factor of ∆ (if P ≠ NP).

 Let R’ be a reduction from L’ to L’’. R’ is gap
preserving if there exists a constant ß such that for
any constant ∆
 if MAXL’(x)/MAXL’(y) ≥ ∆
 then MAXL’’(R(x))/MAXL’’(R(y)) ≥ ß

 If MAXL’ is inapproximable to within a factor of ∆, R’
shows that L’’ is inapproximable to within a factor ß.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 14

Going from NP to PCP
 Nondeterminism is equivalent to having

access to a polynomial-sized “certificate”.
 If a valid certificate exists, the machine accepts.
 We see that many problems which appear hard to

solve are easy to check.
 For PCPs, machines also have access to a

certificate (called a proof).
 The proof is selectively queried using random bits.
 A valid proof causes the machine to accept, an

invalid proof will be rejected with high probability.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 15

Machines with access to
random bits and a proof

Finite Control
Unit, M

Input string, x Proof string, y

Work tape

Random
Bits, rOutput

querier

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 16

Randomized Computation

 Random bits allow machines to recognize
languages with high probability (w.h.p.)
 Example: Polynomial Identity Testing.

 Completeness is the probability of
recognizing a string in the language.

 Soundness is the probability of accepting a
string not in the language.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 17

Completeness and Soundness
with Certificates

 For a TM accepting a language L, with
access to random bits and a proof/certificate:
 Completeness c means that there exists a

certificate such that strings in L are accepted with
probability c.

 Soundness s means that for all certificates the TM
accepts strings not in L with probability s.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 18

PCP Complexity Classes

 PCPc, s[q(n), r(n)] is the class of languages
that can be recognized with by some Turing
machine with soundness s (or less) and
completeness c (or more) using O(r(n))
random bits and O(q(n)) queries to a proof.

 By definition, NP = PCP1, 0 [poly(n), 0]

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 19

An example
 Graph isomorphism (GI) in NP not known to be in P,

nor NP-complete.
 Easy to prove that G and G’ are isomorphic: reveal a

permutation of their vertices transforming G to G’.
 Harder to prove that G and G’ are not isomorphic:

Write an exponentially long “proof”, listing every
permutation of G and G’, and check for duplicates.

 Alternatively, if G and G’ are not isomorphic, write
an even longer “proof”: For each N vertex graph,
write whether it is isomorphic to G, G’ or neither.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 20

Example Continued
 Second proof can be checked quickly w.h.p.
 STEP 1: Randomly choose G or G’.

 STEP 2: Randomly select one of the N! possible
permutations of the graph’s vertices.

 STEP 3: Check if the resultant graph, G’’ is listed in the
proof as a permutation of G or G’

 If G and G’ are not isomorphic, a proof exists
causing our protocol to always accept.

 If they are isomorphic, each G’’ is equally likely to
result from G or G’. Any proof fails half the time.

 The number of queries is small, but proof size (and
hence number of random bits), is too large.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 21

PCP versus NP
 Any language L in PCPc, s [poly(n), log(n)] is

recognized by some machine ML that makes
O(poly(n)) queries to a proof for each
possible sequence of O(log(n)) random bits.

 Given ML, there exists a nondeterministic
Turing machine MN

L that recognizes L.
 On input x, MN

L “guesses” a proof, then simulates
ML on all sequences of random bits

 If at least c fraction of sequences accept, x is in L.
 PCPc, s [poly(n), log(n)] ⊆ NP

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 22

The Power of Randomness

 We just saw PCPc, s [poly(n), log(n)] ⊆ NP
 So PCPc, s [poly(n), log(n)] = PCP1, 0 [poly(n), 1]

 The power of PCPc, s [log(n), poly(n)] is not
nearly as clear (Solves at least coGI).

 What about when proof are polynomial in
length?
 PCPc, s [log(n), log(n)]? PCPc, s [1, log(n)]?

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 23

The PCP Theorem

 It turns out NP ⊆ PCP1, 1/2 [1, log(n)]!
 PCP Theorem (Arora, Lund, Motwani, Sudan,

and Szegedy): NP = PCP1, 1/2 [1, log(n)].
 Recently, a simpler proof was given by Dinur.

 An NP-complete problem is reduced to a problem
in PCP1, 1/2 [1, log(n)]

 The theorem gives us our first hard to
approximate problem.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 24

Why PCP1, 1/2 [1, log(n)]

 If NP = PCP1, 1/2 [1, log(n)], then every
language in NP can be recognized by a
machine that makes a constant number of
random queries to a polynomial-sized proof.

 In the spirit of Cook’s Theorem, the behavior
of these machines can be captured as an
instance of SAT.

 Now instances of SAT will have a gap.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 25

An Inapproximability Result
 The following language, PROB, is NP-complete:

 Let <M, x, 1t> be a triple consisting of a Turing machine with
access to log(t) random bits, a binary input x, and a string of t 1’s.

 <M, x, 1t> is in the language if M accepts some input <x, y> in t
steps with probability p = 1.

 If M ignores its random bits, PROB is the same as ACCEPT
 Since PROB is NP-complete, any language in NP can be

reduced to PROB through some polynomial time reduction, R.
 The PCP Theorem implies R exists such that:

 M’s behavior on <x, y>, when given a particular sequence of
random bits, is only a function of O(1) bits of y.

 OPT = pmax cannot be approximated to within a factor of 2.
 The PCP Theorem gives us a gap introducing reduction!

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 26

Conclusion
 NP-hard decision problems can be recast as NP-

hard optimization problems.
 Often optimization problems are easier to

approximate than to solve exactly.
 PCPs allow us to recast NP, using randomness and

selectively queried proofs.
 The PCP theorem implies that the NP-complete

problem, PROB, does not have a PTAS. Next we:
 Give a gap preserving reduction from PROB to SAT
 Give a gap preserving reduction from SAT to 3SAT. As is

often the case, the standard reduction already works!

