
1

Complexity Classes IV

NP Optimization Problems and
Probabilistically Checkable Proofs

Eric Rachlin

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 2

Decision vs. Optimization
 Most complexity classes are defined in terms

of Yes/No questions.
 In the case of NP, we wish to know if a

certificate exists that satisfies certain
constraints (i.e. SAT, vertex cover, clique, …)

 Even if no certificate exists, we can still ask
how many constraints can be satisfied, or
how large (or small) some parameter can be.

 We let OPT to denote this value.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 3

Decision vs. Optimization

 With respect to polynomial time, optimization
is no harder than decision

 Example: MAXCLIQUE (perform binary
search over instances of CLIQUE)

 Example: MAXSAT (perform binary search
using a variant of SAT that asks if k clauses
can be satisfied)

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 4

Approximation Algorithms
 If P ≠ NP, we cannot find OPT for an NP-complete

optimization problem in polynomial time (PTIME).
 In practice, we may not need an exact answer

(particularly if the parameters of the problem are
themselves estimates).

 An approximation algorithm computes OPT’ such
that |OPT - OPT’| ≤ f(OPT) for some f.

 For NP-complete problems, can f(OPT) be arbitrarily
small?

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 5

What can we hope for?
 A Polynomial Time Approximation

Scheme (PTAS) for an optimization problem
is an algorithm that, for a given ε, results in a
PTIME approximation algorithm such that
|OPT - OPT’| ≤ εOPT.

 The approximation algorithm can still have a
runtime that is exponential in 1/ε.

 Efficient Polynomial Time Approximation
Scheme (EPTAS) adds the requirement that
the runtime be of the form f(ε)*poly(N).

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 6

How good is too good?

 A Fully Polynomial Time Approximation
Scheme (FPTAS) is PTAS where the
running time of the approximation algorithm
is also polynomial in 1/ε.

 It is not hard to show that an FPTAS for
some NP-complete problems implies P = NP.

 It turns out the same is true for a PTAS, but
this is far from obvious. It is a consequence
of the PCP Theorem.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 7

Strongly NP-Hard Problems

 A problem is strongly NP-hard if its NP-
hardness does not require any of its
numerical parameters to be exponential in
the length of the problem.

 Examples: CLIQUE, TSP, SAT, …
 If an FPTAS exists for CLIQUE, we can

approximate the solution to a factor less than
1/N and obtain an exact solution.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 8

Hardness of Approximation

 Do PTASs exist for strongly NP-hard
problems?
 Yes!
 Examples: Planar TSP, Euclidian TSP

 How can we show a PTAS does not exist for
certain NP-complete problems?
 Define NP in terms of PCPs…
 …this leads to a gap introducing reduction…
 …which leads to gap preserving reductions.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 9

Reductions and NP

 Recall Cook’s Theorem (1971):
 SAT is NP-Complete
 The “tableau” of a nondeterminstic Turing

machine can be converted to an instance of SAT.
 The instance of SAT is polynomial in the size of

the tableau, and is satisfied if and only in the
tableau accepts (and is valid).

 SAT was then reduced to other NP-complete
problems (Karp, 1972).

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 10

More on Cook’s Theorem

 It is easy to show that the following language,
ACCEPT, is NP-complete:
 Let <M, x, 1t> be a triple consisting of a deterministic

Turing machine, a binary input to M, and a string of t 1’s.
 <M, x, 1t> is in the language if M accepts some string of the

form <x, y> in at most t steps. (Here y represents a
certificate of length at most t.)

 To prove Cook’s Theorem, give a polynomial time
algorithm that designs a circuit outputting 1 if and
only if M accepts <x, y> after t steps.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 11

So what needs work?

 In Cook’s Theorem, the instance of SAT is
satisfiable iff the nondeterministic Turing
machine accepts after poly(N) steps.

 Even when it does not accept, the instance of
SAT is still “almost” satisfiable.

 We want to introduce a gap.
 Either the instances of SAT are satisfiable,
 Or some fixed fraction of clauses are unsatisfied

by any assignment of values to variables.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 12

Gap Introducing Reduction
 Let x be an instance of some NP-complete

decision problem L, let L(x) denote Is x in L?
 Let MAXL(x) be the corresponding

optimization problem.
 A polynomial time (PTIME) reduction from L

to L’ is some PTIME function, R, such that
L’(R(x)) = L(x).

 R is gap introducing if, for all L(x) = 1 and
L(y) = 0, MAXL’(R(x))/MAXL’(R(y)) ≥ ∆.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 13

Gap Preserving Reductions
 If L is NP-complete, L’ is in NP, and R(x) is a PTIME

gap introducing reduction from L to L’:
 L’ is NP-complete
 MAXL’ is inapproximable to within a factor of ∆ (if P ≠ NP).

 Let R’ be a reduction from L’ to L’’. R’ is gap
preserving if there exists a constant ß such that for
any constant ∆
 if MAXL’(x)/MAXL’(y) ≥ ∆
 then MAXL’’(R(x))/MAXL’’(R(y)) ≥ ß

 If MAXL’ is inapproximable to within a factor of ∆, R’
shows that L’’ is inapproximable to within a factor ß.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 14

Going from NP to PCP
 Nondeterminism is equivalent to having

access to a polynomial-sized “certificate”.
 If a valid certificate exists, the machine accepts.
 We see that many problems which appear hard to

solve are easy to check.
 For PCPs, machines also have access to a

certificate (called a proof).
 The proof is selectively queried using random bits.
 A valid proof causes the machine to accept, an

invalid proof will be rejected with high probability.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 15

Machines with access to
random bits and a proof

Finite Control
Unit, M

Input string, x Proof string, y

Work tape

Random
Bits, rOutput

querier

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 16

Randomized Computation

 Random bits allow machines to recognize
languages with high probability (w.h.p.)
 Example: Polynomial Identity Testing.

 Completeness is the probability of
recognizing a string in the language.

 Soundness is the probability of accepting a
string not in the language.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 17

Completeness and Soundness
with Certificates

 For a TM accepting a language L, with
access to random bits and a proof/certificate:
 Completeness c means that there exists a

certificate such that strings in L are accepted with
probability c.

 Soundness s means that for all certificates the TM
accepts strings not in L with probability s.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 18

PCP Complexity Classes

 PCPc, s[q(n), r(n)] is the class of languages
that can be recognized with by some Turing
machine with soundness s (or less) and
completeness c (or more) using O(r(n))
random bits and O(q(n)) queries to a proof.

 By definition, NP = PCP1, 0 [poly(n), 0]

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 19

An example
 Graph isomorphism (GI) in NP not known to be in P,

nor NP-complete.
 Easy to prove that G and G’ are isomorphic: reveal a

permutation of their vertices transforming G to G’.
 Harder to prove that G and G’ are not isomorphic:

Write an exponentially long “proof”, listing every
permutation of G and G’, and check for duplicates.

 Alternatively, if G and G’ are not isomorphic, write
an even longer “proof”: For each N vertex graph,
write whether it is isomorphic to G, G’ or neither.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 20

Example Continued
 Second proof can be checked quickly w.h.p.
 STEP 1: Randomly choose G or G’.

 STEP 2: Randomly select one of the N! possible
permutations of the graph’s vertices.

 STEP 3: Check if the resultant graph, G’’ is listed in the
proof as a permutation of G or G’

 If G and G’ are not isomorphic, a proof exists
causing our protocol to always accept.

 If they are isomorphic, each G’’ is equally likely to
result from G or G’. Any proof fails half the time.

 The number of queries is small, but proof size (and
hence number of random bits), is too large.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 21

PCP versus NP
 Any language L in PCPc, s [poly(n), log(n)] is

recognized by some machine ML that makes
O(poly(n)) queries to a proof for each
possible sequence of O(log(n)) random bits.

 Given ML, there exists a nondeterministic
Turing machine MN

L that recognizes L.
 On input x, MN

L “guesses” a proof, then simulates
ML on all sequences of random bits

 If at least c fraction of sequences accept, x is in L.
 PCPc, s [poly(n), log(n)] ⊆ NP

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 22

The Power of Randomness

 We just saw PCPc, s [poly(n), log(n)] ⊆ NP
 So PCPc, s [poly(n), log(n)] = PCP1, 0 [poly(n), 1]

 The power of PCPc, s [log(n), poly(n)] is not
nearly as clear (Solves at least coGI).

 What about when proof are polynomial in
length?
 PCPc, s [log(n), log(n)]? PCPc, s [1, log(n)]?

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 23

The PCP Theorem

 It turns out NP ⊆ PCP1, 1/2 [1, log(n)]!
 PCP Theorem (Arora, Lund, Motwani, Sudan,

and Szegedy): NP = PCP1, 1/2 [1, log(n)].
 Recently, a simpler proof was given by Dinur.

 An NP-complete problem is reduced to a problem
in PCP1, 1/2 [1, log(n)]

 The theorem gives us our first hard to
approximate problem.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 24

Why PCP1, 1/2 [1, log(n)]

 If NP = PCP1, 1/2 [1, log(n)], then every
language in NP can be recognized by a
machine that makes a constant number of
random queries to a polynomial-sized proof.

 In the spirit of Cook’s Theorem, the behavior
of these machines can be captured as an
instance of SAT.

 Now instances of SAT will have a gap.

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 25

An Inapproximability Result
 The following language, PROB, is NP-complete:

 Let <M, x, 1t> be a triple consisting of a Turing machine with
access to log(t) random bits, a binary input x, and a string of t 1’s.

 <M, x, 1t> is in the language if M accepts some input <x, y> in t
steps with probability p = 1.

 If M ignores its random bits, PROB is the same as ACCEPT
 Since PROB is NP-complete, any language in NP can be

reduced to PROB through some polynomial time reduction, R.
 The PCP Theorem implies R exists such that:

 M’s behavior on <x, y>, when given a particular sequence of
random bits, is only a function of O(1) bits of y.

 OPT = pmax cannot be approximated to within a factor of 2.
 The PCP Theorem gives us a gap introducing reduction!

Lecture 04: Complexity Classes IV CS 256: Eric Rachlin and John Savage 26

Conclusion
 NP-hard decision problems can be recast as NP-

hard optimization problems.
 Often optimization problems are easier to

approximate than to solve exactly.
 PCPs allow us to recast NP, using randomness and

selectively queried proofs.
 The PCP theorem implies that the NP-complete

problem, PROB, does not have a PTAS. Next we:
 Give a gap preserving reduction from PROB to SAT
 Give a gap preserving reduction from SAT to 3SAT. As is

often the case, the standard reduction already works!

