## Complexity Classes IV

NP Optimization Problems and Probabilistically Checkable Proofs

Eric Rachlin

## Decision vs. Optimization

- Most complexity classes are defined in terms of Yes/No questions.
- In the case of NP, we wish to know if a certificate exists that satisfies certain constraints (i.e. SAT, vertex cover, clique, ...)
- Even if no certificate exists, we can still ask how many constraints can be satisfied, or how large (or small) some parameter can be.
- We let OPT to denote this value.


## Decision vs. Optimization

- With respect to polynomial time, optimization is no harder than decision
- Example: MAXCLIQUE (perform binary search over instances of CLIQUE)
- Example: MAXSAT (perform binary search using a variant of SAT that asks if $k$ clauses can be satisfied)


## Approximation Algorithms

- If $P \neq$ NP, we cannot find OPT for an NP-complete optimization problem in polynomial time (PTIME).
- In practice, we may not need an exact answer (particularly if the parameters of the problem are themselves estimates).
- An approximation algorithm computes OPT' such that |OPT - OPT' $\mid \leq f(O P T)$ for some f.
- For NP-complete problems, can f(OPT) be arbitrarily small?


## What can we hope for?

- A Polynomial Time Approximation Scheme (PTAS) for an optimization problem is an algorithm that, for a given $\varepsilon$, results in a PTIME approximation algorithm such that $\left|O P T-O P T^{\prime}\right| \leq \varepsilon O P T$.
- The approximation algorithm can still have a runtime that is exponential in $1 / \varepsilon$.
- Efficient Polynomial Time Approximation Scheme (EPTAS) adds the requirement that the runtime be of the form $f(\varepsilon)^{*}$ poly $(\mathrm{N})$.


## How good is too good?

- A Fully Polynomial Time Approximation Scheme (FPTAS) is PTAS where the running time of the approximation algorithm is also polynomial in $1 / \varepsilon$.
- It is not hard to show that an FPTAS for some NP-complete problems implies $P=N P$.
- It turns out the same is true for a PTAS, but this is far from obvious. It is a consequence of the PCP Theorem.


## Strongly NP-Hard Problems

- A problem is strongly NP-hard if its NPhardness does not require any of its numerical parameters to be exponential in the length of the problem.
- Examples: CLIQUE, TSP, SAT, ...
- If an FPTAS exists for CLIQUE, we can approximate the solution to a factor less than $1 / \mathrm{N}$ and obtain an exact solution.


## Hardness of Approximation

- Do PTASs exist for strongly NP-hard problems?
- Yes!
- Examples: Planar TSP, Euclidian TSP
- How can we show a PTAS does not exist for certain NP-complete problems?
- Define NP in terms of PCPs...
- ...this leads to a gap introducing reduction...
- ...which leads to gap preserving reductions.


## Reductions and NP

- Recall Cook's Theorem (1971):
- SAT is NP-Complete
- The "tableau" of a nondeterminstic Turing machine can be converted to an instance of SAT.
- The instance of SAT is polynomial in the size of the tableau, and is satisfied if and only in the tableau accepts (and is valid).
- SAT was then reduced to other NP-complete problems (Karp, 1972).


## More on Cook's Theorem

- It is easy to show that the following language, ACCEPT, is NP-complete:
- Let $<\mathrm{M}, \mathrm{x}, 1^{\text {t }}>$ be a triple consisting of a deterministic Turing machine, a binary input to M , and a string of t 's.
- $<\mathrm{M}, \mathrm{x}, 1^{\text {t }}>$ is in the language if M accepts some string of the form $<\mathrm{x}, \mathrm{y}>$ in at most t steps. (Here y represents a certificate of length at most t .)
- To prove Cook's Theorem, give a polynomial time algorithm that designs a circuit outputting 1 if and only if M accepts <x, $\mathrm{y}>$ after t steps.


## So what needs work?

- In Cook's Theorem, the instance of SAT is satisfiable iff the nondeterministic Turing machine accepts after poly $(\mathrm{N})$ steps.
- Even when it does not accept, the instance of SAT is still "almost" satisfiable.
- We want to introduce a gap.
- Either the instances of SAT are satisfiable,
- Or some fixed fraction of clauses are unsatisfied by any assignment of values to variables.


## Gap Introducing Reduction

- Let $x$ be an instance of some NP-complete decision problem $L$, let $L(x)$ denote Is $x$ in $L$ ?
- Let $\operatorname{MAXL}(x)$ be the corresponding optimization problem.
- A polynomial time (PTIME) reduction from L to $L$ ' is some PTIME function, $R$, such that $L^{\prime}(R(x))=L(x)$.
- $R$ is gap introducing if, for all $L(x)=1$ and $\mathrm{L}(\mathrm{y})=0, \mathrm{MAXL}^{\prime}(\mathrm{R}(\mathrm{x})) / \mathrm{MAXL}^{\prime}(\mathrm{R}(\mathrm{y})) \geq \Delta$.


## Gap Preserving Reductions

- If $L$ is NP-complete, $L^{\prime}$ is in NP, and $R(x)$ is a PTIME gap introducing reduction from $L$ to $L^{\prime}$ :
- L' is NP-complete
- MAXL' is inapproximable to within a factor of $\Delta$ (if $\mathrm{P} \neq \mathrm{NP}$ ).
- Let R' be a reduction from L' to L". R' is gap preserving if there exists a constant $\beta$ such that for any constant $\Delta$
- if MAXL' $(x) / M^{\prime} L^{\prime}(y) \geq \Delta$
- then MAXL" $(R(x)) / M A X L "(R(y)) \geq \beta$
- If MAXL' is inapproximable to within a factor of $\Delta$, R' shows that $L$ " is inapproximable to within a factor $B$.


## Going from NP to PCP

- Nondeterminism is equivalent to having access to a polynomial-sized "certificate".
- If a valid certificate exists, the machine accepts.
- We see that many problems which appear hard to solve are easy to check.
- For PCPs, machines also have access to a certificate (called a proof).
- The proof is selectively queried using random bits.
- A valid proof causes the machine to accept, an invalid proof will be rejected with high probability.


## Machines with access to random bits and a proof



## Randomized Computation

- Random bits allow machines to recognize languages with high probability (w.h.p.)
- Example: Polynomial Identity Testing.
- Completeness is the probability of recognizing a string in the language.
- Soundness is the probability of accepting a string not in the language.


## Completeness and Soundness with Certificates

- For a TM accepting a language L , with access to random bits and a proof/certificate:
- Completeness c means that there exists a certificate such that strings in $L$ are accepted with probability c.
- Soundness s means that for all certificates the TM accepts strings not in $L$ with probability s.


## PCP Complexity Classes

- $\mathrm{PCP}_{\mathrm{c}, \mathrm{s}}[\mathrm{q}(\mathrm{n}), \mathrm{r}(\mathrm{n})]$ is the class of languages that can be recognized with by some Turing machine with soundness s (or less) and completeness c (or more) using $\mathrm{O}(\mathrm{r}(\mathrm{n})$ ) random bits and $\mathrm{O}(\mathrm{q}(\mathrm{n})$ ) queries to a proof.
- By definition, NP = PCP $_{1,0}$ [poly(n), 0]


## An example

- Graph isomorphism (GI) in NP not known to be in P, nor NP-complete.
- Easy to prove that G and G' are isomorphic: reveal a permutation of their vertices transforming G to $\mathrm{G}^{\prime}$.
- Harder to prove that $G$ and $G^{\prime}$ are not isomorphic: Write an exponentially long "proof", listing every permutation of G and $\mathrm{G}^{\prime}$, and check for duplicates.
- Alternatively, if G and G' are not isomorphic, write an even longer "proof": For each $N$ vertex graph, write whether it is isomorphic to $\mathrm{G}, \mathrm{G}^{\prime}$ or neither.


## Example Continued

- Second proof can be checked quickly w.h.p.
- STEP 1: Randomly choose G or G'.
- STEP 2: Randomly select one of the N! possible permutations of the graph's vertices.
- STEP 3: Check if the resultant graph, $\mathrm{G}^{\prime \prime}$ is listed in the proof as a permutation of $G$ or $G^{\prime}$
- If $G$ and $\mathrm{G}^{\prime}$ are not isomorphic, a proof exists causing our protocol to always accept.
- If they are isomorphic, each G" is equally likely to result from G or $\mathrm{G}^{\prime}$. Any proof fails half the time.
- The number of queries is small, but proof size (and hence number of random bits), is too large.


## PCP versus NP

- Any language $L$ in $\mathrm{PCP}_{c, s}[p o l y(n), \log (n)]$ is recognized by some machine $M_{L}$ that makes $\mathrm{O}($ poly(n)) queries to a proof for each possible sequence of $O(\log (n))$ random bits.
- Given $\mathrm{M}_{\mathrm{L}}$, there exists a nondeterministic Turing machine $M_{L}^{N}$ that recognizes $L$.
- On input $x, \mathrm{M}^{\mathrm{N}}$ "guesses" a proof, then simulates $\mathrm{M}_{\mathrm{L}}$ on all sequences of random bits
- If at least $c$ fraction of sequences accept, $x$ is in $L$.
- $\mathrm{PCP}_{\mathrm{c}, \mathrm{s}}[$ poly(n), $\log (\mathrm{n})] \subseteq \mathrm{NP}$


## The Power of Randomness

- We just saw $\mathrm{PCP}_{\mathrm{c}, \mathrm{s}}[\mathrm{poly}(\mathrm{n}), \log (\mathrm{n})] \subseteq \mathrm{NP}$
- So $\mathrm{PCP}_{\mathrm{c}, \mathrm{s}}[\mathrm{poly}(\mathrm{n}), \log (\mathrm{n})]=\mathrm{PCP}_{1,0}[$ poly(n), 1]
- The power of $P_{C, s}[\log (n), \operatorname{poly}(n)]$ is not nearly as clear (Solves at least coGl).
- What about when proof are polynomial in length?
- $\operatorname{PCP}_{\mathrm{c}, \mathrm{s}}[\log (\mathrm{n}), \log (\mathrm{n})]$ ? $\mathrm{PCP}_{\mathrm{c}, \mathrm{s}}[1, \log (\mathrm{n})]$ ?


## The PCP Theorem

- It turns out NP $\subseteq \mathrm{PCP}_{1,1 / 2}[1, \log (\mathrm{n})]$ !
- PCP Theorem (Arora, Lund, Motwani, Sudan, and Szegedy): NP $=$ PCP $_{1,1 / 2}[1, \log (\mathrm{n})]$.
- Recently, a simpler proof was given by Dinur.
- An NP-complete problem is reduced to a problem in $\mathrm{PCP}_{1,1 / 2}[1, \log (\mathrm{n})]$
- The theorem gives us our first hard to approximate problem.

Why $\operatorname{PCP}_{1,1 / 2}[1, \log (n)]$

- If NP $=\mathrm{PCP}_{1,1 / 2}[1, \log (\mathrm{n})]$, then every language in NP can be recognized by a machine that makes a constant number of random queries to a polynomial-sized proof.
- In the spirit of Cook's Theorem, the behavior of these machines can be captured as an instance of SAT.
- Now instances of SAT will have a gap.


## An Inapproximability Result

- The following language, PROB, is NP-complete:
- Let $<\mathrm{M}, \mathrm{x}, 1^{\text {t }}>$ be a triple consisting of a Turing machine with access to $\log (t)$ random bits, a binary input $x$, and a string of $t$ 's.
- $<M, x, 1^{1>}$ is in the language if $M$ accepts some input $\langle x, y>$ in $t$ steps with probability $p=1$.
- If M ignores its random bits, PROB is the same as ACCEPT
- Since PROB is NP-complete, any language in NP can be reduced to PROB through some polynomial time reduction, $R$.
- The PCP Theorem implies R exists such that:
- M's behavior on $\langle x, y\rangle$, when given a particular sequence of random bits, is only a function of $O(1)$ bits of $y$.
- OPT $=\mathrm{p}_{\max }$ cannot be approximated to within a factor of 2 .
- The PCP Theorem gives us a gap introducing reduction!


## Conclusion

- NP-hard decision problems can be recast as NPhard optimization problems.
- Often optimization problems are easier to approximate than to solve exactly.
- PCPs allow us to recast NP, using randomness and selectively queried proofs.
- The PCP theorem implies that the NP-complete problem, PROB, does not have a PTAS. Next we:
- Give a gap preserving reduction from PROB to SAT
- Give a gap preserving reduction from SAT to 3SAT. As is often the case, the standard reduction already works!

