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Abstract. Near-duplicates are abundant in short text databases. Detecting and 
eliminating them is of great importance. SimFinder proposed in this paper is a 
fast algorithm to identify all near-duplicates in large-scale short text databases. 
An ad hoc term weighting scheme is employed to measure each term’s dis-
criminative ability. A certain number of terms with higher weights are seletect as 
features for each short text. SimFinder generates several fingerprints for each 
text, and only texts with at least one fingerprint in common are compared with 
each other. An optimization procedure is employed in SimFinder to make it more 
efficient. Experiments indicate that SimFinder is an effective solution for short 
text duplicate detection with almost linear time and storage complexity. Both 
precision and recall of SimFinder are promising. 
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1   Introduction 

The rapid technological improvements in Internet and telecommunication have led to 
an explosion of digital data. A large proportion of such data are short texts, such as 
mobile phone short messages, instant messages. It is reported that more than 1.58 
billion mobile phone short messages are sent each day in Mainland China [1]. Tencent 
QQ has attracted more than 430 million users, and billions of instant messages are sent 
each day [2]. 

Duplicates are abundant in short text databases. In our investigation, more than 40% 
mobile phone short messages have at least one identical duplicate, and an even larger 
proportion of them are near-duplicates. Detecting and eliminating these duplicate short 
messages is of great importance for other short text language processing, such as 
clustering, opinion mining, topic detection and tracking, community uncovering. 
Identical duplicate short texts are easy to detect by standard hashing schemes. Identi-
fication of near-duplicate short texts is much more difficult because of the following 
reasons: First of all, a single short text contains usually less than 200 characters, which 
makes it difficult to extract effective features. Second, there are usually a huge number 
of texts in a short text database. Third, Informal abbreviations, transliterations and 
network languages are prevailing in short text databases [2]. 
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In this paper, an algorithm called SimFinder is presented to detect near-duplicates in 
large-scale short text databases. An ad hoc weighting scheme is employed in SimFinder 
to make duplicate measure more precise. Only a few terms with higher weights are 
extracted as features. Fingerprints are generated from these features, and only short 
texts with the same fingerprint will compare with each other. An optimization solution 
is also proposed to reduce comparisons further. 

2   Related Work 

A variety of techniques have been developed to identify academic plagiarism [3,4,5,6], 
web page duplicates [7,8,9,10], duplicate database records [11,12]. Brin et al. have 
proposed a prototype system called COPS (COpy Protection System) to safeguard 
intellectual property of digital documents [3]. Shivakumar et al. have developed SCAM 
(Stand Copy Analysis Mechanism) as a part of the Stanford Digital Library project [4]. 
Broder finds it sufficient to keep each document a “sketch” of “shingles” to compute 
the resemblance of two documents. Any document pair with at least one common 
shingle is examined whether it exceeds the threshold for resemblence. Broder’s shin-
gling method works well on duplicate detection in AltaVista search engine [8]. 

Lyon et al. have investigated the theoretical background to automated plagiarism 
detection [5]. They observe that independently written texts have a comparatively low 
level of matching trigrams. The Ferret plagiarism system counts matching trigrams of a 
pair of documents [5,6]. Shivakumar presents two approaches to compute overlap 
between all web document pairs simultaneously. Both of them assume that only when 
document di and dj share more than k fingerprints can they be candidate near-duplicates, 
where k is a predefined threshold [7]. 

Manku et al. show that Charikar’s simhash [13] is practically useful for identifying 
near- duplicates in large-scale web page repository [9]. Simhash is a fingerprint tech-
nique enjoying the property that fingerprints of near-duplicates differ only in a small 
number of bit positions [9,13]. If the simhash fingerprints of two documents are similar, 
they are deemed to be near-duplicates. 

3   SimFinder 

As for a large-scale short text database, it is imporssible to detect near-duplicates by 
comparing texts with each other. A certain number of fingerprints are extracted from 
each text in SimFinder, and only short texts sharing same fingerprints are possible to be 
near-duplicates. 

3.1   Term Weighting and Duplicate Degree 

Terms play different roles in texts. Generally speaking, nouns, verbs and adjectives are 
more discriminative than adverbs, connectives, pronouns and numerals. It is improper 
to assign a same weight to all terms [14]. Since few terms will occur more than one time 
in a single short text, the traditional tf-idf scheme is inappropriate for short texts. 

As for each set G of terms with the same part-of-speech, an empirical weight interval 
[a,b] is associated in SimFinder, where a and b are the minimal and maximal weight 
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that may be assigned to terms in G respectively. Let weight interval of G be [a,b] , a 
simple linear interpolation is used to compute the weight of each term Gt ∈  as fol-
lows: 

a
FF

FtFab
tW +

′−
′−−= ))()((

)(                                  (1) 

Where F(t) is the frequency of term t in the background database, F and F′ denote the 
frequency of the most and least frequently used term in G respectively. The weighting 
scheme of Equation 1 does not take term length into account. We notice that longer 
terms are usually more important than shorter terms. Let |t| denote the length of term t, 
the long-term-preferred weighting scheme can be defined as follows: 

||||
))()((

)( tat
FF

FtFab
tW +

′−
′−−=                         (2) 

Duplicate degree is a measure of similarity between two texts. Texts with duplicate 
degree higher than a predefined threshold θ are considered as near-duplicates. Let A 
and B be two texts, the standard duplicate degree called Jaccard similarity is defined as 
follows: 
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Where S(A) and S(B) are the set of terms contained in text A and B respectively. All 
terms are considered as equal importance in Equation 3. Let w(ti) be the weight of term 
ti, the weighted variant of duplicate degree can be defined as follows: 
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3.2   Feature Extraction and Optimization 

Since there are no blanks to mark words in Chinese texts, SimFinder segments each 
short text into a serial of terms. Terms are then sorted in descending order of their 
weights. Terms with higher weights are called discriminative terms and selected as 
features. 

Remark 1: In real short text databases, when two short texts A and B are 
near-duplicates, most discriminative terms occur in both A and B. Near-duplicates 
differ usually only in connectives, pronouns, numerals, and punctuations. 

Each N contiguous features (or called N-gram) are hashed into an integer as fin-
gerprint. If two short texts A and B have no fingerprints in common, they are impossible 
to be near-duplicates. As a result, numerous unnecessary comparisons can be avoided. 
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As for text A with m terms, no more than Nk +=λ  terms are necessary to be selected 
as features, where k is the minimal integer satisfying the following inequality: 
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Where w(ti) denotes the weight of term ti and θ is the duplicate degree threshold. 

Definition 1: Let },...,,{ 21 nTTTD =  be the text database, and ArB denote A is  

duplicated to B, then },,|),{( DBDAArBBAR ∈∈=  is called a duplicate relation  

on D. R is called a transitive duplicate relation if and only if 
RCARCBRBA ∈⇒∈∈∀ ),(),(,),( . 

Remark 2: In real short text databases, duplicate transitivity holds in almost all cases. 
In other words, if ArB and BrC, A and C are near-duplicates in almost all cases. 

If ArB and BrC, A and C are called a potential duplicate pair. In traditional text da-
tabases, duplicate relation does not always observe transitivity. While almost all short 
text databases satisfy Remark 2. With Remark 2, potential duplicate pairs can be safely 
regarded as near-duplicates, so the computation of duplicate degree is unnecessary. 

4   Experiments and Evaluations 

Various experiments have been conducted with two short text databases. One is a  
short message corpus composed of 12 million mobile phone short messages (735 
megabytes), the other is a BBS title corpus with 5 million BBS titles (157 mega-
bytes). 

 

 

 

Fig. 1. The precision on short message corpus Fig. 2. The precision on BBS title corpus 

Before we verify the effectiveness of SimFinder, a proper duplicate degree threshold 
must be determined. For each duplicate degree )101(05.050.0 ≤≤+= iid , 200 pairs 

of candidate duplicate short texts with duplicate degree in interval [ ]dd ,05.0−  are  
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selected randomly and are checked manually whether they are near-duplicates. The 
precision of Equation 3 and Equation 4 are shown in Figure 1 and Figure 2. Experi-
ments indicate that Equation 4 is more effective than Equation 3. The duplicate degree 
0.65 is selected as the threshold because the precision is acceptable in both the short 
message corpus and the BBS title corpus. 

A base-line algorithm is employed to generate all possible near-duplicate pairs. 
Texts with at least two continuous words in common are compared with each other. 
One million short messages with no identical duplicates have been used to choose gram 
size and feature number. The recall of algorithm A is defined as the ratio of the number 
of duplicate text detected by algorithm A to the number of duplicate text detected by the 
base-line algorithm. Figure 3 shows the effect of gram size on recall, and Figure 4 
shows the effect of gram size on efficiency. N=3 is selected in SimFinder because the 
recall is acceptable and the efficiency is promising. 

Let λ=k+N, where k is defined in Ineqation 5, and N has been determined to be 3. 
Figure 5 and Figure 6 show the effect of feature number on recall and efficiency re-
spectively. As can be seen that the feature number computed as Inequation 5 is feasible 
since the recall is almost 1. More features are unnecessary because the recall increases 
very little. 

 

Fig. 3. The effect of gram size on recall Fig. 4. The effect of gram size on comparison 
number 

 

Fig. 5. The effect of feature number on recall Fig. 6. The effect of feature number on com-
parison number 

Ten thousand potential duplicate pairs are selected randomly to verify the correct-
ness of Remark 2. For each potential duplicate pair (A,B), duplicate degree d(A,B) is 
computed using Equation 4. Only 23 of them are less than 0.65, So the optimization  
has very little negative effect on precision. As for the short message corpus, if no 
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Fig. 7. Run times on short message corpus Fig. 8. Run times on BBS title corpus 

Fig. 9. Storage consumption on short message 
corpus 

Fig. 10. Storage consumption on BBS title 
corpus 

optimization procedure is included, the duplicate degree of 642,404,813 duplicate pairs 
must be computed using Equation 4. When optimization procedure is included, only 
120,725,627 comparisons are needed. The optimization procedure increases the effi-
ciency of SimFinder more than 4 times. 

The SimFinder has been implemented in C++. We use a dawning server S4800A 
with 4 CPUs and 8G bytes of memory to test the performance of SimFinder. Figure 7 
and Figure 8 show the run time of SimFinder on short message corpus and BBS title 
corpus respectively. Figure 9 and Figure 10 show the storage consumption of Sim-
Finder. As can be seen that both run time and storage consumption are almost linear 
correlated with the size of corpus. 

5   Conclusion 

SimFinder is an effective and efficient algorithm to detect and eliminate duplicates in 
large-scale short text databases. Three techniques have been included in SimFinder: the 
ad hoc term weighting technique, the discriminative-term selection technique, the 
optimization technique. Experiments have shown that SimFinder is an encouraging 
solution for large-scale short text duplicate detection. 
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