
T. Washio et al. (Eds.): PAKDD 2008, LNAI 5012, pp. 877–883, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Detecting Near-Duplicates in Large-Scale Short
Text Databases

Caichun Gong1,2, Yulan Huang 1,2, Xueqi Cheng1, and Shuo Bai1

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, P.R.C.
2 Graduate School of Chinese Academy of Sciences, Beijing, 100049, P.R.C.

gongcaichun@software.ict.ac.cn, huangyulan@software.ict.ac.cn,
cxq@ict.ac.cn, bs_7799@hotmail.com

Abstract. Near-duplicates are abundant in short text databases. Detecting and
eliminating them is of great importance. SimFinder proposed in this paper is a
fast algorithm to identify all near-duplicates in large-scale short text databases.
An ad hoc term weighting scheme is employed to measure each term’s dis-
criminative ability. A certain number of terms with higher weights are seletect as
features for each short text. SimFinder generates several fingerprints for each
text, and only texts with at least one fingerprint in common are compared with
each other. An optimization procedure is employed in SimFinder to make it more
efficient. Experiments indicate that SimFinder is an effective solution for short
text duplicate detection with almost linear time and storage complexity. Both
precision and recall of SimFinder are promising.

Keywords: duplicate detection, short text, term weighting, optimization.

1 Introduction

The rapid technological improvements in Internet and telecommunication have led to
an explosion of digital data. A large proportion of such data are short texts, such as
mobile phone short messages, instant messages. It is reported that more than 1.58
billion mobile phone short messages are sent each day in Mainland China [1]. Tencent
QQ has attracted more than 430 million users, and billions of instant messages are sent
each day [2].

Duplicates are abundant in short text databases. In our investigation, more than 40%
mobile phone short messages have at least one identical duplicate, and an even larger
proportion of them are near-duplicates. Detecting and eliminating these duplicate short
messages is of great importance for other short text language processing, such as
clustering, opinion mining, topic detection and tracking, community uncovering.
Identical duplicate short texts are easy to detect by standard hashing schemes. Identi-
fication of near-duplicate short texts is much more difficult because of the following
reasons: First of all, a single short text contains usually less than 200 characters, which
makes it difficult to extract effective features. Second, there are usually a huge number
of texts in a short text database. Third, Informal abbreviations, transliterations and
network languages are prevailing in short text databases [2].

878 C. Gong et al.

In this paper, an algorithm called SimFinder is presented to detect near-duplicates in
large-scale short text databases. An ad hoc weighting scheme is employed in SimFinder
to make duplicate measure more precise. Only a few terms with higher weights are
extracted as features. Fingerprints are generated from these features, and only short
texts with the same fingerprint will compare with each other. An optimization solution
is also proposed to reduce comparisons further.

2 Related Work

A variety of techniques have been developed to identify academic plagiarism [3,4,5,6],
web page duplicates [7,8,9,10], duplicate database records [11,12]. Brin et al. have
proposed a prototype system called COPS (COpy Protection System) to safeguard
intellectual property of digital documents [3]. Shivakumar et al. have developed SCAM
(Stand Copy Analysis Mechanism) as a part of the Stanford Digital Library project [4].
Broder finds it sufficient to keep each document a “sketch” of “shingles” to compute
the resemblance of two documents. Any document pair with at least one common
shingle is examined whether it exceeds the threshold for resemblence. Broder’s shin-
gling method works well on duplicate detection in AltaVista search engine [8].

Lyon et al. have investigated the theoretical background to automated plagiarism
detection [5]. They observe that independently written texts have a comparatively low
level of matching trigrams. The Ferret plagiarism system counts matching trigrams of a
pair of documents [5,6]. Shivakumar presents two approaches to compute overlap
between all web document pairs simultaneously. Both of them assume that only when
document di and dj share more than k fingerprints can they be candidate near-duplicates,
where k is a predefined threshold [7].

Manku et al. show that Charikar’s simhash [13] is practically useful for identifying
near- duplicates in large-scale web page repository [9]. Simhash is a fingerprint tech-
nique enjoying the property that fingerprints of near-duplicates differ only in a small
number of bit positions [9,13]. If the simhash fingerprints of two documents are similar,
they are deemed to be near-duplicates.

3 SimFinder

As for a large-scale short text database, it is imporssible to detect near-duplicates by
comparing texts with each other. A certain number of fingerprints are extracted from
each text in SimFinder, and only short texts sharing same fingerprints are possible to be
near-duplicates.

3.1 Term Weighting and Duplicate Degree

Terms play different roles in texts. Generally speaking, nouns, verbs and adjectives are
more discriminative than adverbs, connectives, pronouns and numerals. It is improper
to assign a same weight to all terms [14]. Since few terms will occur more than one time
in a single short text, the traditional tf-idf scheme is inappropriate for short texts.

As for each set G of terms with the same part-of-speech, an empirical weight interval
[a,b] is associated in SimFinder, where a and b are the minimal and maximal weight

 Detecting Near-Duplicates in Large-Scale Short Text Databases 879

that may be assigned to terms in G respectively. Let weight interval of G be [a,b] , a
simple linear interpolation is used to compute the weight of each term Gt ∈ as fol-
lows:

a
FF

FtFab
tW +

′−
′−−=))()((

)((1)

Where F(t) is the frequency of term t in the background database, F and F′ denote the
frequency of the most and least frequently used term in G respectively. The weighting
scheme of Equation 1 does not take term length into account. We notice that longer
terms are usually more important than shorter terms. Let |t| denote the length of term t,
the long-term-preferred weighting scheme can be defined as follows:

||||
))()((

)(tat
FF

FtFab
tW +

′−
′−−= (2)

Duplicate degree is a measure of similarity between two texts. Texts with duplicate
degree higher than a predefined threshold θ are considered as near-duplicates. Let A
and B be two texts, the standard duplicate degree called Jaccard similarity is defined as
follows:

|)()(|

|)()(|
),(

BSAS

BSAS
BAd

U

I= (3)

Where S(A) and S(B) are the set of terms contained in text A and B respectively. All
terms are considered as equal importance in Equation 3. Let w(ti) be the weight of term
ti, the weighted variant of duplicate degree can be defined as follows:

∑
∑

∈

∈=

)()(

)()(

)(

)(

),(

BSAStj

j

BSASti

i

tw

tw

BAd

U

I
 (4)

3.2 Feature Extraction and Optimization

Since there are no blanks to mark words in Chinese texts, SimFinder segments each
short text into a serial of terms. Terms are then sorted in descending order of their
weights. Terms with higher weights are called discriminative terms and selected as
features.

Remark 1: In real short text databases, when two short texts A and B are
near-duplicates, most discriminative terms occur in both A and B. Near-duplicates
differ usually only in connectives, pronouns, numerals, and punctuations.

Each N contiguous features (or called N-gram) are hashed into an integer as fin-
gerprint. If two short texts A and B have no fingerprints in common, they are impossible
to be near-duplicates. As a result, numerous unnecessary comparisons can be avoided.

880 C. Gong et al.

As for text A with m terms, no more than Nk +=λ terms are necessary to be selected
as features, where k is the minimal integer satisfying the following inequality:

θ>
∑

∑

=

=
m

i
i

k

i
i

tw

tw

1

1

)(

)(
 (5)

Where w(ti) denotes the weight of term ti and θ is the duplicate degree threshold.

Definition 1: Let },...,,{ 21 nTTTD = be the text database, and ArB denote A is

duplicated to B, then },,|),{(DBDAArBBAR ∈∈= is called a duplicate relation

on D. R is called a transitive duplicate relation if and only if
RCARCBRBA ∈⇒∈∈∀),(),(,),(.

Remark 2: In real short text databases, duplicate transitivity holds in almost all cases.
In other words, if ArB and BrC, A and C are near-duplicates in almost all cases.

If ArB and BrC, A and C are called a potential duplicate pair. In traditional text da-
tabases, duplicate relation does not always observe transitivity. While almost all short
text databases satisfy Remark 2. With Remark 2, potential duplicate pairs can be safely
regarded as near-duplicates, so the computation of duplicate degree is unnecessary.

4 Experiments and Evaluations

Various experiments have been conducted with two short text databases. One is a
short message corpus composed of 12 million mobile phone short messages (735
megabytes), the other is a BBS title corpus with 5 million BBS titles (157 mega-
bytes).

Fig. 1. The precision on short message corpus Fig. 2. The precision on BBS title corpus

Before we verify the effectiveness of SimFinder, a proper duplicate degree threshold
must be determined. For each duplicate degree)101(05.050.0 ≤≤+= iid , 200 pairs

of candidate duplicate short texts with duplicate degree in interval []dd ,05.0− are

 Detecting Near-Duplicates in Large-Scale Short Text Databases 881

selected randomly and are checked manually whether they are near-duplicates. The
precision of Equation 3 and Equation 4 are shown in Figure 1 and Figure 2. Experi-
ments indicate that Equation 4 is more effective than Equation 3. The duplicate degree
0.65 is selected as the threshold because the precision is acceptable in both the short
message corpus and the BBS title corpus.

A base-line algorithm is employed to generate all possible near-duplicate pairs.
Texts with at least two continuous words in common are compared with each other.
One million short messages with no identical duplicates have been used to choose gram
size and feature number. The recall of algorithm A is defined as the ratio of the number
of duplicate text detected by algorithm A to the number of duplicate text detected by the
base-line algorithm. Figure 3 shows the effect of gram size on recall, and Figure 4
shows the effect of gram size on efficiency. N=3 is selected in SimFinder because the
recall is acceptable and the efficiency is promising.

Let λ=k+N, where k is defined in Ineqation 5, and N has been determined to be 3.
Figure 5 and Figure 6 show the effect of feature number on recall and efficiency re-
spectively. As can be seen that the feature number computed as Inequation 5 is feasible
since the recall is almost 1. More features are unnecessary because the recall increases
very little.

Fig. 3. The effect of gram size on recall Fig. 4. The effect of gram size on comparison
number

Fig. 5. The effect of feature number on recall Fig. 6. The effect of feature number on com-
parison number

Ten thousand potential duplicate pairs are selected randomly to verify the correct-
ness of Remark 2. For each potential duplicate pair (A,B), duplicate degree d(A,B) is
computed using Equation 4. Only 23 of them are less than 0.65, So the optimization
has very little negative effect on precision. As for the short message corpus, if no

882 C. Gong et al.

Fig. 7. Run times on short message corpus Fig. 8. Run times on BBS title corpus

Fig. 9. Storage consumption on short message
corpus

Fig. 10. Storage consumption on BBS title
corpus

optimization procedure is included, the duplicate degree of 642,404,813 duplicate pairs
must be computed using Equation 4. When optimization procedure is included, only
120,725,627 comparisons are needed. The optimization procedure increases the effi-
ciency of SimFinder more than 4 times.

The SimFinder has been implemented in C++. We use a dawning server S4800A
with 4 CPUs and 8G bytes of memory to test the performance of SimFinder. Figure 7
and Figure 8 show the run time of SimFinder on short message corpus and BBS title
corpus respectively. Figure 9 and Figure 10 show the storage consumption of Sim-
Finder. As can be seen that both run time and storage consumption are almost linear
correlated with the size of corpus.

5 Conclusion

SimFinder is an effective and efficient algorithm to detect and eliminate duplicates in
large-scale short text databases. Three techniques have been included in SimFinder: the
ad hoc term weighting technique, the discriminative-term selection technique, the
optimization technique. Experiments have shown that SimFinder is an encouraging
solution for large-scale short text duplicate detection.

Acknowlegments. This research is supported by The 973 National Basic Research
Program of China under the Grant NO. 2004CB318109 and 2007CB311100.

 Detecting Near-Duplicates in Large-Scale Short Text Databases 883

References

1. Website of Ministry of Information Industry of China, http://www.mii.gov.cn/
2. Hu, J.X.: Message text clustering based on frequent patterns (In Chinese). M.S. thesis, In-

stitute of Computing Technology, Chinese Academy of Sciences. Beijing, China (2006)
3. Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for digital documents. In:

Proceedings of the ACM SIGMOD Annual Conference, San Francisco, CA (May 1995)
4. Shivakumar, N., Garcia-Molina, H.: SCAM:A copy detection mechanism for digital

documents. In: Proceedings of 2nd International Conference in Theory and Practice of
Digital Libraries, Austin, Texas (June 1995)

5. Lyon, C., Barrett, R., Malcolm, J.: A theoretical basis to the automated detection of copying
between texts, and its practical implementation in the Ferret plagiarism and collusion de-
tector. In: Plagiarism: Prevention, Practice and Policies Conference (June 2004)

6. Lyon, C., Barrett, R., Malcolm, J.: Plagiarism is easy, but also easy to detect. Plagiary:
Cross-Disciplinary Studies in Plagiarism, Fabrication, and Falsification 1(5), 1–10 (2006)

7. Shivakumar, N., Garnia-Molina, H.: Finding near-replicas of documents on the web. In:
Proceedings of Workshop on Web Databases, Valencia, Spain (March 1998)

8. Broder, A.: Identifying and Filtering Near-Duplicate Documents. In: Proceedings of the
11th Annual Symposium on Combinatorial Pattern Matching, Montreal, Canada (June
2000)

9. Manku, G.S., Jain, A., Sarma, A.D.: Detecting near-duplicates for web crawling. In: Pro-
ceedings of the 16th International World Wide Web Conference, Banff, Alberta, Canada
(May 2007)

10. Henzinger, M.: Finding near-duplicate web pages: A large-scale evaluation of algorithms.
In: Proceedings of the 29th Annul International ACM SIGIR Conference on Research and
Development in Information Retrieval, Seattle, Washington, U.S.A (August 2006)

11. Tian, Z.P., Lu, H.J., Ji, W.Y., et al.: An n-gram-based approach for detecting approximately
duplicate database records. International Journal on Digital Libraries 5(3), 325–331 (2001)

12. Hernandez, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In: Proceed-
ings of the 1995 ACM SIGMOD International Conference on Management of Data, San
Jose, CA, U.S.A (1995)

13. Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings of
34th Annul Symposium on Theory of Computing, Montréal, Québec, Canada (May 2002)

14. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Information
Processing and Management: an International Journal 24(5), 513–523 (1988)

	Detecting Near-Duplicates in Large-Scale Short Text Databases
	Introduction
	Related Work
	SimFinder
	Term Weighting and Duplicate Degree
	Feature Extraction and Optimization

	Experiments and Evaluations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

