CS242: Lecture 9B Outline

- Naïve and Structured Mean Field
- Bethe Approximations and Loopy Belief Propagation
- Summary: Variational Inference via Message Passing
Exponential Families: Marginal Polytopes

\[p(x \mid \theta) = \exp\{\theta^T \phi(x) - \Phi(\theta)\} \quad \Phi(\theta) = \log \sum_x \exp\{\theta^T \phi(x)\} \]

- Any joint distribution has a unique set of expected statistics (moments):
 \[\mu = \nabla_\theta \Phi(\theta) = \mathbb{E}_\theta[\phi(x)] = \sum_x \phi(x)p(x \mid \theta) \]

- The convex marginal polytope is the set of feasible expected statistics:
 \[\mathcal{M} \triangleq \{\mu \in \mathbb{R}^d \mid \exists p \text{ such that } \mathbb{E}_p[\phi(x)] = \mu\} \subseteq [0, 1]^d \]

- **Vertex representation:** Convex hull of feature vectors for (exponentially large) number of joint states:
 \[\mathcal{M} = \text{conv}\{\phi(x) \mid x \in \mathcal{X}\} \]

- **Facet representation:** Linear moment constraints (how many?) defining boundaries of polytope:
 \[\mathcal{M} = \{\mu \in \mathbb{R}^d \mid \langle a_j, \mu \rangle \geq b_j \ \forall j \in \mathcal{J}\} \]
Exponential Families: Variational Inference

\[p(x \mid \theta) = \exp\{\theta^T \phi(x) - \Phi(\theta)\} \]

\[\Phi(\theta) = \log \sum_x \exp\{\theta^T \phi(x)\} \]

• Canonical parameters & moments:
 \[\Theta \triangleq \{\theta \in \mathbb{R}^d \mid \Phi(\theta) < +\infty\} \]
 \[\mathcal{M} \triangleq \{\mu \in \mathbb{R}^d \mid \exists p \text{ such that } E_p[\phi(x)] = \mu\} \]

• Inference: Find moments of model with known parameters (joint distribution)
 \[\mu = \nabla_{\theta} \Phi(\theta) = E_{\theta}[\phi(x)] = \sum_x \phi(x)p(x \mid \theta) \]

• From KLD, moments are solution to a variational optimization problem:
 \[\Phi(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \theta^T \mu + H(p(x \mid \theta(\mu)) \right\} \]

For learning from data, both log-normalizer and moments are important.
Mean Field assumes Markov with respect to sub-graph F of original graph G:
- Equivalent to constraining some exponential family parameters to equal zero
- Sub-graph picked so that entropy is “simple”, and thus optimization tractable

Mean field provides lower bound on true log-normalizer:
- Optimize over smaller set where true objective can be evaluated
- No approximation to any terms in variational objective, only to constraint set

Mean field optimization has local optima:
- Inner approx has all vertices but not full marginal polytope, so never convex
Naïve Mean Field Approximations

- Express pairwise MRF in exponential family ("energy") form:

\[p(x) = \frac{1}{Z} \exp \left\{ - \sum_{(s,t) \in E} \phi_{st}(x_s, x_t) - \sum_{s \in V} \phi_s(x_s) \right\} \]

\[\phi_{st}(x_s, x_t) = - \log \psi_{st}(x_s, x_t) \]

\[\phi_s(x_s) = - \log \psi_s(x_s) \]

- A naïve mean field method approximates distribution as fully factorized:

\[q(x) = \prod_{s \in V} q_s(x_s) \]

Free parameters to be optimized:

\[q_s(x_s = k) = \mu_{sk} \geq 0, \quad \sum_{k=1}^{K_s} \mu_{sk} = 1. \]
Naïve Mean Field Updates

Free Energy: \[F(\mu) = -H(\mu) + E(\mu) \]

Entropy: \[H(\mu) = -\sum_{s \in \mathcal{V}} \sum_k \mu_{sk} \log \mu_{sk} \]

Average Energy: \[E(\mu) = \sum_{(s,t) \in \mathcal{E}} \sum_{k,\ell} \mu_{sk} \mu_{\ell t} \phi_{st}(k, \ell) + \sum_{s \in \mathcal{V}} \sum_k \mu_{sk} \phi_s(k) \]

- Constraints which any feasible solution must satisfy:
 \[\sum_k \mu_{sk} = 1 \text{ for all nodes } s \in \mathcal{V}. \]

- Lagrangian encoding objective and constraints:
 \[\mathcal{L}(\mu) = -H(\mu) + E(\mu) + \sum_{s \in \mathcal{V}} \lambda_s \left(1 - \sum_k \mu_{sk} \right) \]

- Coordinate descent: Optimize one node marginal fixing others, iterate.
Mean Field as Message Passing

\[
p(x) = \frac{1}{Z} \prod_{(s,t) \in E} \psi_{st}(x_s, x_t) \prod_{s \in V} \psi_s(x_s)
\]

\[
\phi_{st}(x_s, x_t) = -\log \psi_{st}(x_s, x_t)
\]

\[
q_i(x_i) \propto \psi_i(x_i) \prod_{j \in \Gamma(i)} m_{ji}(x_i)
\]

\[
m_{ji}(x_i) \propto \exp \left\{ -\sum_{x_j} \phi_{ij}(x_i, x_j) q_j(x_j) \right\}
\]

- Compared to belief propagation, has identical formula for estimating marginals from messages, but a different message update equation.
- If neighboring marginals degenerate to single state, recover Gibbs sampling message.
Any subgraph for which inference is tractable leads to a mean field approximation for which the update equations are tractable.
Tree-Structured Distributions

\[q(x) = \prod_{s \in \mathcal{V}} q_s(x_s) \prod_{(s,t) \in \mathcal{E}} \frac{q_{st}(x_s, x_t)}{q_s(x_s)q_t(x_t)} \]

- Distributions that are Markov with respect to tree factorize, with parameters:
 \[q_s(x_s), s \in \mathcal{V} \quad q_{st}(x_s, x_t), (s, t) \in \mathcal{E} \quad \sum_{x_t} q_{st}(x_s, x_t) = q_s(x_s) \]

- The entropy of the tree-structured distribution then decomposes as:
 \[H(q) = \sum_{s \in \mathcal{V}} H_s(q_s) - \sum_{(s,t) \in \mathcal{E}} I_{st}(q_{st}) \]
 \[H_s(q_s) = -\sum_{x_s} q_s(x_s) \log q_s(x_s) \]
 \[I_{st}(q_{st}) = \sum_{x_s, x_t} q_{st}(x_s, x_t) \log \frac{q_{st}(x_s, x_t)}{q_s(x_s)q_t(x_t)} \]
Partition the graph edges into two sets:

\[\mathcal{E}_c \rightarrow \text{core} \text{ edges, dependence directly modeled:} \quad q_{st}(x_s, x_t) \]

\[\mathcal{E}_r \rightarrow \text{residual} \text{ edges, assume nodes factorize:} \quad q_s(x_s)q_t(x_t) \]
Straightforward but Intimidating Objective

\[
p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \quad \phi_{st}(x_s, x_t) = -\log \psi_{st}(x_s, x_t) \\
\phi_s(x_s) = -\log \psi_s(x_s)
\]

\[
\mathcal{L}(q, \lambda) = \\
+ \sum_{s \in \mathcal{V}} \sum_{x_s} q_s(x_s) (\phi_s(x_s) + \log q_s(x_s)) \\
+ \sum_{(s,t) \in \mathcal{E}_r} \sum_{x_s, x_t} q_s(x_s) q_t(x_t) \phi_{st}(x_s, x_t) \\
+ \sum_{(s,t) \in \mathcal{E}_c} \sum_{x_s, x_t} q_{st}(x_s, x_t) \left(\phi_{st}(x_s, x_t) + \log \frac{q_{st}(x_s, x_t)}{q_s(x_s) q_t(x_t)} \right) \\
+ \sum_{s \in \mathcal{V}} \lambda_{ss} \left(1 - \sum_{x_s} q_s(x_s) \right) \\
+ \sum_{(s,t) \in \mathcal{E}_c} \left[\sum_{x_s} \lambda_{ts}(x_s) \left(q_s(x_s) - \sum_{x_t} q_{st}(x_s, x_t) \right) + \sum_{x_t} \lambda_{st}(x_t) \left(q_t(x_t) - \sum_{x_s} q_{st}(x_s, x_t) \right) \right]
\]
MF & BP: Message Passing

\[p(x) = \frac{1}{Z} \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

\[\phi_{st}(x_s, x_t) = -\log \psi_{st}(x_s, x_t) \]

\[\phi_s(x_s) = -\log \psi_s(x_s) \]

Beliefs:

pseudomarginals

\[q_t(x_t) = \frac{1}{Z_t} \psi_t(x_t) \prod_{u \in \Gamma(t)} m_{ut}(x_t) \]

MF:

residual

\[m_{ts}(x_s) \propto \exp \left\{ -\sum_{x_t} \phi_{st}(x_s, x_t) q_t(x_t) \right\} \]

BP:

core

\[m_{ts}(x_s) \propto \sum_{x_t} \psi_{st}(x_s, x_t) \frac{q_t(x_t)}{m_{st}(x_t)} \]

- **Naïve mean field**: All edges in \textit{residual}, guaranteed convergent
- **Structured mean field**: Edges in \textit{core} link disconnected forest of trees, remaining edges in \textit{residual}, guaranteed convergent and strictly more expressive
- **Loopy belief propagation**: All edges in \textit{core}, captures most direct dependences, but approximation uncontrolled and may not converge
CS242: Lecture 9B Outline

- Naïve and Structured Mean Field
- Bethe Approximations and Loopy Belief Propagation
- Summary: Variational Inference via Message Passing

Fig. 4.2 Highly idealized illustration of the relation between the marginal polytope $M(G)$ and the outer bound $L(G)$. The set $L(G)$ is always an outer bound on $M(G)$, and the inclusion $M(G) \subset L(G)$ is strict whenever G has cycles. Both sets are polytopes and so can be represented either as the convex hull of a finite number of extreme points, or as the intersection of a finite number of half-spaces, known as facets.

Letting ϕ be a shorthand for the full vector of indicator functions in the standard overcomplete representation (3.34), the marginal polytope has the convex hull representation

$$M(G) = \text{conv}\{\phi(x) | x \in X\}.$$

Since the indicator functions are $\{0, 1\}$-valued, all of its extreme points consist of $\{0, 1\}$ elements, of the form $\mu_x := \phi(x)$ for some $x \in X_m$; there are $|X_m|$ such extreme points. However, with the exception of tree-structured graphs, the number of facets for $M(G)$ is not known in general, even for relatively simple cases like the Ising model; see the book [69] for background on the cut or correlation polytope, which is equivalent to the marginal polytope for an Ising model. However, the growth must be super-polynomial in the graph size, unless certain widely believed conjectures in computational complexity are false.

On the other hand, the polytope $L(G)$ has a polynomial number of facets, upper bounded by any graph by $O(r_m + r^2|E|)$. It has more extreme points than $M(G)$, since in addition to all the integral extreme points $\{\mu_x, x \in X_m\}$, it includes other extreme points $\tau \in L(G) \setminus M(G)$ that contain fractional elements; see Section 8.4 for further discussion of integral versus fractional extreme points. With the exception of trees and small instances, the total number of extreme points of $L(G)$ is not known in general.
Tree-Based Outer Approximations

- For some graph G, denote true marginal polytope by $\mathbb{M}(G)$
- Given marginals for nodes & edges, impose local consistency constraints
 \[
 \sum_{x_s} \mu_s(x_s) = 1, \quad s \in \mathcal{V} \\
 \mu_s(x_s) \geq 0, \quad \mu_{st}(x_s, x_t) \geq 0
 \]
- \[
 \sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s), \quad (s, t) \in \mathcal{E}, \ x_s \in \mathcal{X}_s
 \]
- For any graph, this is a convex outer bound: $\mathbb{M}(G) \subseteq \mathbb{L}(G)$
- For any tree-structured graph T, we have $\mathbb{M}(T) = \mathbb{L}(T)$
Marginals and Pseudo-Marginals

Local Constraints Exactly Represent Trees:
Construct joint consistent with any marginals

\[p_\mu(x) = \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \prod_{s \in V} \mu_s(x_s) \]

For Any Graph with Cycles, Local Constraints are Loose:

Consider three binary variables and restrict \(\mu_1 = \mu_2 = \mu_3 = 0.5 \) denote potentially invalid pseudo-marginals by \(\tau_s, \tau_{st} \)
Properties of Local Constraint Polytope

\[\sum_{x_s} \mu_s(x_s) = 1, \quad s \in V \quad \mu_s(x_s) \geq 0, \quad \mu_{st}(x_s, x_t) \geq 0 \]

\[\sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s), \quad (s, t) \in E, \quad x_s \in X_s \]

- Number of faces upper bounded by \(O(KN + K^2 E) \) for graphs with \(N \) nodes, \(E \) edges, \(K \) discrete states per node
- Contains all of the degenerate vertices of true marginal polytope, as well as additional \textit{fractional} vertices (total number unknown in general)
Bethe Variational Methods

\[
\Phi(\theta) \approx \sup_{\tau \in \mathcal{L}(G)} \left\{ \theta^T \tau + H_B(\tau) \right\}
\]

\[
H_B(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} I_{st}(\tau_{st})
\]

- Local consistency constraints are convex, but allow globally inconsistent pseudo-marginals on graphs with cycles
- Bethe entropy approximation may not be concave, and may not even be a valid (non-negative) entropy

Example: Four binary variables

\[
p_\mu(0,0,0,0) = p_\mu(1,1,1,1) = 0.5
\]

\[
\mu_s(x_s) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \quad \text{for } s = 1,2,3,4
\]

\[
\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s,t) \in E.
\]

\[
H_B(\mu) = 4 \log 2 - 6 \log 2 = -2 \log 2 \quad H(\mu) = \log 2
\]
Loopy BP Very Accurate for Sparse Graphs

Brendan J. Frey*
http://www.cs.utoronto.ca/~frey
Department of Computer Science
University of Toronto

David J. C. MacKay
http://vol.ra.phy.cam.ac.uk/mackay
Department of Physics, Cavendish Laboratory
Cambridge University

Kevin P. Murphy and Yair Weiss and Michael I. Jordan
Computer Science Division
University of California
Berkeley, CA 94705
{murphyk,yweiss,jordan}@cs.berkeley.edu
Tree-Based Entropy Bounds

\[p(x) = \frac{1}{Z} \exp \left\{ - \sum_{(s,t) \in \mathcal{E}} \phi_{st}(x_s, x_t) - \sum_{s \in \mathcal{V}} \phi_s(x_s) \right\} \]

\[H(\mu(T)) = \sum_{s \in \mathcal{V}} H_s(\mu_s) - \sum_{(s,t) \in \mathcal{E}(T)} I_{st}(\mu_{st}) \]

\[H(\mu) \leq H(\mu(T)) \quad \text{for any tree } T \]

Maximum entropy property of exponential families:

- Original distribution maximizes entropy subject to constraints:
 \[\mathbb{E}_p [\phi_{st}(x_s, x_t)] = \mu(x_s, x_t), \quad (s, t) \in \mathcal{E} \]

- Tree-structured distribution maximizes subject to a subset of the full constraints (those corresponding to edges in tree):
 \[\mathbb{E}_p [\phi_{st}(x_s, x_t)] = \mu(x_s, x_t), \quad (s, t) \in \mathcal{E}(T) \]
Tree-Based Entropy Bounds

Let us now consider the form of the outer bound \(\varphi(T) \) for edge \((s,t) \) from some distribution over subtrees in the original graph:

\[
H(\mu) \leq \sum_{T} \rho(T) H(\mu(T)) \quad \rho_{st} = \mathbb{E}_{\rho} \left[\mathbb{I} [(s,t) \in E(T)] \right]
\]

- Family of bounds depends on edge appearance probabilities (one number per edge) from some distribution over subtrees in the original graph:
Reweighted Bethe Variational Methods

\[\Phi(\theta) \leq \sup_{\tau \in \mathbb{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \]

\[H_\rho(\tau) = \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st}) \]

- Local consistency constraints are convex, but allow globally inconsistent pseudo-marginals on graphs with cycles
- Assuming we pick weights corresponding to some distribution on acyclic sub-graphs, have upper bound on true entropy
- This defines a convex surrogate to true variational problem

Issues to resolve:
- Given edge weights, how can we efficiently find the best pseudo-marginals? A message-passing algorithm?
- There are many distributions over spanning trees. How can we find the best edge appearance probabilities?
Spanning Tree Polytope

\[\Phi(\theta) \leq \sup_{\tau \in \mathcal{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \]

\[H_\rho(\tau) = \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\tau_{st}) \]

- Bound holds assuming edge weights lie in the spanning tree polytope (generated by some valid distribution on trees)
- Optimize via conditional gradient method:
 - Find descent direction by maximizing gradient (linear) over constraints
 - For spanning tree polytope, this is a max-weight spanning tree problem
 - Iteratively tightens bound on the true partition function

\[\rho_b = 1, \rho_e = \frac{2}{3}, \rho_f = \frac{1}{3} \]
\[\rho_{st} = \frac{1}{2} \]

\(\checkmark \) Bertsekas 1999
CS242: Lecture 9B Outline

- Naïve and Structured Mean Field
- Bethe Approximations and Loopy Belief Propagation
- Summary: Variational Inference via Message Passing
For n positive numbers, the weighted power mean with exponent p equals

$$M_p(x_1, \ldots, x_n) = \left(\sum_{i=1}^{n} w_i x_i^p \right)^{1/p} \quad w_i > 0, \sum_{i=1}^{n} w_i = 1.$$

The power means are monotonically increasing in the exponent:

$$M_p(x_1, \ldots, x_n) \leq M_q(x_1, \ldots, x_n) \text{ if } p < q.$$

As exponent approaches infinity, recover maximum:

$$M_{\infty}(x_1, \ldots, x_n) = \lim_{p \to \infty} M_p(x_1, \ldots, x_n) = \max\{x_1, \ldots, x_n\}$$

As exponent approaches zero, recover geometric mean:

$$M_0(x_1, \ldots, x_n) = \lim_{p \to 0} M_p(x_1, \ldots, x_n) = \prod_{i=1}^{n} x_i^{w_i} = \exp \left\{ \sum_{i=1}^{n} w_i \log x_i \right\}$$

Wikipedia
MF & Reweighted BP: Message Passing

\[p(x) = \frac{1}{Z} \prod_{(s,t)\in \mathcal{E}} \psi_{st}(x_s, x_t) \prod_{s \in \mathcal{V}} \psi_s(x_s) \]

Beliefs:

Pseudo-marginals

\[q_{t}(x_{t}) = \frac{1}{Z_{t}} \psi_{t}(x_{t}) \prod_{u \in \Gamma(t)} m_{ut}(x_{t}) \]

Mean Field

\[m_{ts}(x_{s}) \propto \exp \left\{ \sum_{x_{t}} q_{t}(x_{t}) \log \psi_{st}(x_{s}, x_{t}) \right\} \]

Loopy BP

\[m_{ts}(x_{s}) \propto \sum_{x_{t}} \psi_{st}(x_{s}, x_{t}) \frac{q_{t}(x_{t})}{m_{st}(x_{t})} \]

Reweighted BP

\[m_{ts}(x_{s}) \propto \left[\sum_{x_{t}} \psi_{st}(x_{s}, x_{t})^{1/\rho_{st}} \frac{q_{t}(x_{t})}{m_{st}(x_{t})^{1/\rho_{st}}} \right]^{\rho_{st}} \]

- **Reweighted BP** becomes **loopy BP** when \(\rho_{st} = 1 \)
- **Reweighted BP** approaches **mean field** as \(\rho_{st} \to \infty \)
MF & Reweighted BP: Variational Objective

\[\Phi(\theta) \approx \sup_{\tau \in \mathcal{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \]

\[H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st}) \]

- View edge weights as positive, tunable parameters
- In the limit where they become very large:

\[\rho_{st} \rightarrow \infty \quad \text{optimum sets} \quad I_{st}(\tau_{st}) = 0 \quad \tau_{st}(x_s, x_t) = \tau_s(x_s) \tau_t(x_t) \]

Mean Field: For acyclic edge set \(\rho_{st} = 1 \), otherwise \(\rho_{st} \rightarrow \infty \)

- Objective: Lower bounds true \(\Phi(\theta) \), but non-convex
- Message-passing: Guaranteed convergent, but local optima
\[\Phi(\theta) \approx \sup_{\tau \in \mathcal{L}(G)} \left\{ \theta^T \tau + H_\rho(\tau) \right\} \]

\[H_\rho(\tau) = \sum_{s \in \mathcal{V}} H_s(\tau_s) - \sum_{(s,t) \in \mathcal{E}} \rho_{st} I_{st}(\tau_{st}) \]

Loopy BP: For all edges, set \(\rho_{st} = 1 \)

- **Objective:** Non-convex approximation, possibly poor, sometimes excellent
- **Message-passing:** Multiple optima, may not converge, but can be very effective

Reweighted BP: Respect spanning tree polytope, \(0 < \rho_{st} \leq 1 \)

- **Objective:** Upper bounds true \(\Phi(\theta) \), convex
- **Message-passing:** Single global optimum, typically convergent

Mean Field: For acyclic edge set \(\rho_{st} = 1 \), otherwise \(\rho_{st} \to \infty \)

- **Objective:** Lower bounds true \(\Phi(\theta) \), but non-convex
- **Message-passing:** Guaranteed convergent, but local optima
Example: Mean Field on a Markov Chain

Use curvature cues to determine figure-ground for contour.

True Marginals
Computed by BP

Mean Field:
Random Init #1

Mean Field:
Random Init #2

Weiss 2001
Example: Loopy BP versus Mean Field

Toroidal 9x9 Grid with Attractive Binary Potentials (Weiss 2001)

Loopy BP

MF init from Loopy BP

MF init Randomly
Example: Reweighted vs. Loopy BP

Grid with attractive coupling

Error in marginals vs. Coupling strength

- Upper
- Opt. upper
- Bethe

Wainwright 2005
Summary: Variational Inference Algorithms

\[
p(x \mid \theta) = \exp\{\theta^T \phi(x) - \Phi(\theta)\}
\]

\[
\Phi(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \theta^T \mu + H(p(x \mid \theta(\mu))) \right\}
\]

Bethe & Loopy BP: Approximate log-partition function
- Define tractable outer bound on constraints \(\mathcal{M}_+ \supset \mathcal{M} \)
- Tree-based models give approximation to true entropy

Reweighted BP: Upper bound log-partition function
- Define tractable outer bound on constraints \(\mathcal{M}_+ \supset \mathcal{M} \)
- Tree-based models give tractable upper bound on true entropy

Mean Field: Lower bound log-partition function
- Restrict optimization to some simpler subset \(\mathcal{M}_- \subset \mathcal{M} \)
- Imposing conditional independencies makes entropy tractable