CS242: Lecture 8A Outline

- Beta priors for Bernoulli distributions
- Dirichlet priors for categorical distributions
- Conjugate priors for exponential family distributions

![Graph showing distributions for different sample sizes](image-url)
Suppose I have L independent observations sampled from some unknown probability distribution:

$$ x = \{ x^{(1)}, \ldots, x^{(L)} \} $$

We have a \textit{likelihood model} with unknown parameters:

$$ p(x | \theta) = \prod_{\ell=1}^{L} p(x^{(\ell)} | \theta) $$

We have a \textit{prior distribution} on parameters (possible models):

$$ p(\theta) $$

\textit{Posterior distribution} on parameters, given data:

$$ p(\theta | x) = \frac{1}{p(x)} p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} | \theta) $$
Bayesian Parameter Estimation

- **Maximum a Posteriori (MAP) parameter estimate:**
 Choose the parameters with largest posterior probability.

 \[
 \hat{\theta} = \arg \max_\theta p(\theta \mid x) = \arg \max_\theta p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)
 \]

- **Conditional Expectation parameter estimate:**
 Set the parameters to the mean of the posterior distribution.

 \[
 \hat{\theta} = E[\theta \mid x] = \int \theta p(\theta \mid x) \, d\theta
 \]

- **Posterior distribution** on parameters, given data:

 \[
p(\theta \mid x) = \frac{1}{p(x)} p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)
 \]
Bayesian Parameter Estimation

- **Maximum a Posteriori (MAP) parameter estimate:**
 Choose the parameters with largest posterior probability.

 \[\hat{\theta} = \arg \max_{\theta} p(\theta | x) = \arg \max_{\theta} p(\theta) \prod_{\ell=1}^{L} p(x^{(\ell)} | \theta) \]

- **Conditional Expectation parameter estimate:**
 Set the parameters to the mean of the posterior distribution.

 \[\hat{\theta} = E[\theta | x] = \int \theta p(\theta | x) \, d\theta \]

- Both estimators pick parameters with high posterior probability
- Choice of estimator can be formalized via **decision theory**
 (conditional expectation minimizes expected squared error)
Bayesian Learning of Binary Distributions

Bernoulli Distribution: Single toss of a (possibly biased) coin

\[
\text{Ber}(x \mid \theta) = \theta^x (1 - \theta)^{1-x} \quad 0 \leq \theta \leq 1 \quad x \in \{0, 1\}
\]

\[
p(x^{(1)}, \ldots, x^{(L)} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}
\]

\[
N_1 = \sum_{\ell=1}^{L} x^{(\ell)} \quad N_0 = \sum_{\ell=1}^{L} (1 - x^{(\ell)}) = L - N_1
\]

Uniform Prior Distribution:

\[
p(\theta) = 1 \quad \text{for} \quad 0 \leq \theta \leq 1.
\]

Posterior Distribution:

\[
p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)} = \frac{1}{p(x)} \theta^{N_1} (1 - \theta)^{N_0} \quad \text{for} \quad 0 \leq \theta \leq 1.
\]

\[
p(x) = \int_0^1 p(x \mid \theta)p(\theta) \, d\theta.
\]

What is this distribution?
Beta Distributions

Beta probability density function: \(\theta \in [0, 1] \)

\[
\text{Beta}(\theta \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1}
\]

\[
B(\alpha, \beta) \triangleq \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)} \quad \alpha, \beta > 0
\]

\[
\Gamma(k) = (k - 1)!
\]

\[
\Gamma(x + 1) = x \Gamma(x)
\]
Beta Distributions

Beta probability density function: $\theta \in [0, 1]$

$$\text{Beta}(\theta | \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1}$$

$$\mathbb{E}[\theta] = \frac{\alpha}{\alpha + \beta}$$

$$\text{Var}[\theta] = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$$
There is a unique mode assuming $\alpha > 1, \beta > 1$

$$\text{Mode}[\theta] = \arg \max_{\theta \in [0,1]} \text{Beta}(\theta \mid \alpha, \beta) = \frac{\alpha - 1}{(\alpha - 1) + (\beta - 1)}$$

Otherwise the mode may be degenerate ($\theta = 0$ or 1) or be undefined.
Bayesian Learning of Binary Distributions

Bernoulli Distribution: Single toss of a (possibly biased) coin

\[
\text{Ber}(x \mid \theta) = \theta^x (1 - \theta)^{1-x} \quad 0 \leq \theta \leq 1 \quad x \in \{0, 1\}
\]

\[
p(x^{(1)}, \ldots, x^{(L)} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}
\]

\[
N_1 = \sum_{\ell=1}^{L} x^{(\ell)} \quad N_0 = \sum_{\ell=1}^{L} (1 - x^{(\ell)}) = L - N_1
\]

Beta Prior Distribution:

\[
p(\theta) = \text{Beta}(\theta \mid \alpha, \beta) \propto \theta^{\alpha-1} (1 - \theta)^{\beta-1}
\]

Beta Posterior Distribution:

\[
p(\theta \mid x) \propto \theta^{N_1 + \alpha -1} (1 - \theta)^{N_0 + \beta -1} \propto \text{Beta}(\theta \mid N_1 + \alpha, N_0 + \beta)
\]

Prior is conjugate to likelihood because posterior distribution in same family.
Bayesian Learning of Binary Distributions

Recommended Estimator: Posterior mean

\[\hat{\theta} = \mathbb{E}[\theta | x] = \frac{N_1 + \alpha}{N_1 + \alpha + N_0 + \beta} \]

With uniform prior:

\[\hat{\theta} = \mathbb{E}[\theta | x] = \frac{N_1 + 1}{N_1 + N_0 + 2} \quad \text{“add one” to observed counts} \]

Beta Prior Distribution:

\[p(\theta) = \text{Beta}(\theta | \alpha, \beta) \propto \theta^{\alpha-1} (1 - \theta)^{\beta-1} \]

Beta Posterior Distribution:

\[p(\theta | x) \propto \theta^{N_1+\alpha-1} (1 - \theta)^{N_0+\beta-1} \propto \text{Beta}(\theta | N_1 + \alpha, N_0 + \beta) \]

Prior is **conjugate** to likelihood because posterior distribution in same family.
A Sequence of Beta Posteriors

\[p(\theta) = 1 \text{ for } 0 \leq \theta \leq 1. \]

\[p(\theta \mid x) = \frac{1}{p(x)} \theta^{N_1} (1 - \theta)^{N_0} \]
Estimators for Beta Posteriors

<table>
<thead>
<tr>
<th>Prior:</th>
<th>$p(\theta) = \text{Beta}(\theta \mid \alpha, \beta)$</th>
<th>$p(\theta) = \text{Beta}(\theta \mid 1, 1) = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE:</td>
<td>$\hat{\theta} = \mathbb{E}[\theta \mid x] = \frac{N_1 + \alpha}{N + \alpha + \beta}$</td>
<td>$\hat{\theta} = \mathbb{E}[\theta \mid x] = \frac{N_1 + 1}{N + 2}$</td>
</tr>
<tr>
<td>MAP:</td>
<td>$\hat{\theta} = \arg \max_\theta p(\theta \mid x) = \frac{N_1 + \alpha - 1}{N + \alpha + \beta - 2}$</td>
<td>$\hat{\theta} = \arg \max_\theta p(\theta \mid x) = \frac{N_1}{N}$</td>
</tr>
<tr>
<td>assuming $N_1 + \alpha > 1$, $N_0 + \beta > 1$</td>
<td>equivalent to maximum likelihood (ML)</td>
<td></td>
</tr>
</tbody>
</table>

$p(\theta \mid x) = \text{Beta}(\theta \mid N_1 + \alpha, N_0 + \beta)$

$N_1 = \sum_{i=1}^{N} x_i$

$N_0 = N - N_1$
CS242: Lecture 8A Outline

- Beta priors for Bernoulli distributions
- Dirichlet priors for categorical distributions
- Conjugate priors for exponential family distributions
Dirichlet Probability Distributions

Simplex: Set of possible categorical distributions

\[\Theta = \{ \theta : 0 \leq \theta_k \leq 1, \sum_{k=1}^{K} \theta_k = 1 \} \]

Dirichlet: Probability distribution on simplex

\[
\text{Dir}(\theta \mid \alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1} \\
\alpha_k > 0 \\
\alpha_0 = \sum_{k=1}^{K} \alpha_k
\]

Normalizer:

\[
B(\alpha) \triangleq \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\alpha_0)}
\]

Mean:

\[
\mathbb{E}[\theta_k] = \frac{\alpha_k}{\alpha_0}
\]

Variance: Inversely proportional to \(\alpha_0 \)
Samples from Dirichlet Prior Distributions

Dir(\theta \mid 0.1, 0.1, 0.1, 0.1, 0.1)

Mean weights classes equally, but biased towards sparse distributions

Dir(\theta \mid 1.0, 1.0, 1.0, 1.0, 1.0)

Uniform distribution on probability simplex
Bayes Learning of Categorical Distributions

Categorical Distribution: Single roll of a (possibly biased) die

\[
\text{Cat}(x \mid \theta) = \prod_{k=1}^{K} \theta_k^{x_k} \quad x_k \in \{0, 1\}, \quad \sum_{k=1}^{K} x_k = 1.
\]

\[
p(x^{(1)}, \ldots, x^{(L)} \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k} \quad N_k = \sum_{\ell=1}^{L} x_k^{(\ell)}
\]

Dirichlet Prior Distribution:

\[
p(\theta) = \text{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}
\]

Dirichlet Posterior Distribution:

\[
p(\theta \mid x) \propto \prod_{k=1}^{K} \theta_k^{N_k + \alpha_k - 1} \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \ldots, N_K + \alpha_K)
\]

Prior is conjugate to likelihood because posterior distribution in same family.
Bayes Learning of Categorical Distributions

Recommended Estimator: Posterior mean

\[\hat{\theta}_k = \mathbb{E}[\theta_k | x] = \frac{N_k + \alpha_k}{L + \alpha_0} \]

With uniform prior:

\[\hat{\theta}_k = \mathbb{E}[\theta_k | x] = \frac{N_k + 1}{L + K} \]

Dirichlet Prior Distribution:

\[p(\theta) = \text{Dir}(\theta | \alpha) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1} \]

Dirichlet Posterior Distribution:

\[p(\theta | x) \propto \prod_{k=1}^{K} \theta_k^{N_k + \alpha_k - 1} \propto \text{Dir}(\theta | N_1 + \alpha_1, \ldots, N_K + \alpha_K) \]

Prior is conjugate to likelihood because posterior distribution in same family.
Possible Dirichlet Priors & Posteriors

Prior:

\[p(\theta) = \text{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_k - 1} \]

- \(K \) parameters (positive numbers)
- \(K-1 \) degrees of freedom define mean:
 \[\mathbb{E}[\theta_k] = \frac{\alpha_k}{\alpha_0} \quad \alpha_0 = \sum_{k=1}^{K} \alpha_k \]

- Variance proportional to \(1/\alpha_0 \)
- Favors \textit{sparsity} as \(\alpha_0 \to 0 \)

Posterior:

\[p(\theta \mid x) \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \ldots, N_K + \alpha_K) \]

- Posterior mean is weighted average of prior mean and observed counts
- As \(N \) grows, posterior variance shrinks
Estimators for Dirichlet Posterior

<table>
<thead>
<tr>
<th>Prior: $p(\theta) = \text{Dir}(\theta \mid \alpha_1, \ldots, \alpha_K)$</th>
<th>$p(\theta) = \text{Dir}(\theta \mid 1, \ldots, 1) = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_0 = \sum_{k=1}^{K} \alpha_k$</td>
<td>$p(\theta) = \text{Dir}(\theta \mid 1, \ldots, 1) = 1$</td>
</tr>
</tbody>
</table>

| MMSE: $\hat{\theta}_k = \mathbb{E}[\theta_k \mid x] = \frac{N_k + \alpha_k}{N + \alpha_0}$ | $\hat{\theta}_k = \mathbb{E}[\theta_k \mid x] = \frac{N_k + 1}{N + K}$ |

| MAP: $\hat{\theta}_k = \frac{N_k + \alpha_k - 1}{N + \alpha_0 - K}$ | $\hat{\theta} = \frac{N_k}{N}$ |

assuming $N_k + \alpha_k > 1$ for all k

equivalent to maximum likelihood (ML)

$p(\theta \mid x) = \text{Dir}(\theta \mid N_1 + \alpha_1, \ldots, N_K + \alpha_K)$

$N_k = \sum_{n=1}^{N} x_{nk}$
3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy

3.6.2 Some Simple Examples

Theorem 3.4 is best understood by working through some simple examples. Table 3.2 provides the conjugate dual pair \((A, A^*)\) for several well-known exponential families of scalar random variables. For each family, the table also lists \(\Omega := \text{dom } A\), as well as the set \(\mathcal{M}\), which contains the effective domain of \(A^*\), corresponding to the set of values for which \(A^*\) is finite.

In the rest of this section, we illustrate the basic ideas by working through two simple scalar examples in detail. To be clear, neither of these examples is interesting from a computational perspective — indeed, for most scalar exponential families, it is trivial to compute the mapping between canonical and mean parameters by direct methods. Nonetheless, they are useful in building intuition for the consequences of Theorem 3.4. The reader interested only in the main thread may skip ahead to Section 3.7, where we resume our discussion of the role of Theorem 3.4 in the derivation of approximate inference algorithms for multivariate exponential families.

Example 3.10 (Conjugate Duality for Bernoulli).

Consider a Bernoulli variable \(X \in \{0, 1\}\): its distribution can be written as an exponential family with \(\phi(x) = x\), \(A(\theta) = \log(1 + \exp(\theta))\), and \(\Omega = \mathbb{R}\). In order to verify the claim in Theorem 3.4(a), let us compute the conjugate dual function \(A^*\) by direct methods. By the definition of conjugate function, \(\nabla \Phi(\theta)\).
Directed factorization allows likelihood to locally decompose:

\[
p(x) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\Gamma(i)}, \theta_i)
\]

Intuition: Must learn a good predictive model of each node, given its parent nodes.

- Directed factorization allows likelihood to locally decompose:
 \[
p(x \mid \theta) = p(x_1 \mid \theta_1)p(x_2 \mid x_1, \theta_2)p(x_3 \mid x_1, \theta_3)p(x_4 \mid x_2, x_3, \theta_4)
\]
 \[
 \log p(x \mid \theta) = \log p(x_1 \mid \theta_1) + \log p(x_2 \mid x_1, \theta_2) + \log p(x_3 \mid x_1, \theta_3) + \log p(x_4 \mid x_2, x_3, \theta_4)
\]

- We often assume a similarly factorized (meta-independent) prior:
 \[
p(\theta) = p(\theta_1)p(\theta_2)p(\theta_3)p(\theta_4)
\]
 \[
 \log p(\theta) = \log p(\theta_1) + \log p(\theta_2) + \log p(\theta_3) + \log p(\theta_4)
\]

- We thus have *independent* Bayesian learning problems at each node.
Bayesian Learning with Complete Data

- Directed graph encodes statistical structure of single training examples:

\[
p(x \mid \theta) = \prod_{\ell=1}^{L} \prod_{i=1}^{N} p(x^{(\ell)}_i \mid x^{(\ell)}_{\Gamma(i)}, \theta_i)
\]

- Given completely observed training data, nodes have independent posteriors:

\[
p(\theta \mid x) \propto p(\theta)p(x \mid \theta) \propto \prod_{i=1}^{N} \left[p(\theta_i) \prod_{\ell=1}^{L} p(x^{(\ell)}_i \mid x^{(\ell)}_{\Gamma(i)}, \theta_i) \right]
\]
Bayesian Learning with Complete Data

• For discrete variables with no parents, parameters define some *Bernoulli/categorical distribution with a beta/Dirichlet conjugate prior*

• More generally, there are multiple categorical distributions per node, one for every *combination* of parent variables
 ➢ Learning objective decomposes into multiple terms, one for subset of training data with each parent configuration
 ➢ Apply independent Bayesian learning to each

• How can we generalize to continuous variables? *Exponential families.*

• Given completely observed training data, nodes have independent posteriors:

\[
p(\theta | x) \propto p(\theta)p(x | \theta) \propto \prod_{i=1}^{N} \left[p(\theta_{i}) \prod_{\ell=1}^{L} p(x_{i}^{(\ell)} | x_{\Gamma(i)}^{(\ell)}, \theta_{i}) \right]
\]
Exponential Families of Distributions

\[
p(x \mid \theta) = \frac{1}{Z(\theta)} \nu(x) \exp\{\theta^T \phi(x)\} \quad Z(\theta) = \int \nu(x) \exp\{\theta^T \phi(x)\} \; dx
\]

\[
= \nu(x) \exp\{\theta^T \phi(x) - \Phi(\theta)\} \quad \Phi(\theta) = \log Z(\theta)
\]

\(\phi(x) \in \mathbb{R}^d\) \quad \text{fixed vector of } \text{\textit{sufficient statistics}} \quad \text{(features), specifying the family of distributions}

\(\theta \in \Theta \subseteq \mathbb{R}^d\) \quad \text{unknown vector of } \text{\textit{natural parameters}}, determine particular distribution in this family

\(Z(\theta) > 0\) \quad \text{normalization constant or } \text{\textit{partition function}} \quad \text{(for discrete variables, integral becomes sum)}

\(\nu(x) > 0\) \quad \text{\textit{reference measure} independent of parameters} \quad \text{(for many models, we simply have } \nu(x) = 1\text{)}

\(\Theta = \{\theta \in \mathbb{R}^d \mid Z(\theta) < \infty\}\) \quad \text{ensures we construct a } \text{\textit{valid distribution}}
ML Estimation for Exponential Families

\[\log p(x^{(\ell)} | \theta) = \log \nu(x^{(\ell)}) + \theta^T \phi(x^{(\ell)}) - \Phi(\theta) \]

- Given \(L \) observations, the log-likelihood function equals:

\[L(\theta) = C + \left[\sum_{\ell=1}^{L} \theta^T \phi(x^{(\ell)}) \right] - L\Phi(\theta) \]

\[C = \sum_{\ell=1}^{L} \log \nu(x^{(\ell)}) \]

- Note that the negative log-likelihood function is convex!

- Gradients of the log-likelihood function have a simple form:

\[\nabla L(\theta) = \left[\sum_{\ell=1}^{L} \phi(x^{(\ell)}) \right] - LE_\theta[\phi(x)] \]

- At unique global optimum, gradient is 0:

\[E_\theta[\phi(x)] = \frac{1}{L} \sum_{\ell=1}^{L} \phi(x^{(\ell)}) \]
Exponential Families: Inference & Learning

\[\log p(x^{(\ell)} | \theta) = \log \nu(x^{(\ell)}) + \theta^T \phi(x^{(\ell)}) - \Phi(\theta) \]

- Canonical parameters & moments:
 \(\Theta \triangleq \{ \theta \in \mathbb{R}^d | \Phi(\theta) < +\infty \} \)
 \(\mathcal{M} \triangleq \{ \mu \in \mathbb{R}^d | \exists p \text{ such that } \mathbb{E}_p[\phi(x)] = \mu \} \)

- Inference: Find moments of model with known parameters (joint distribution). Computable from marginals!
 \(\mu = \nabla_\theta \Phi(\theta) = \mathbb{E}_\theta[\phi(x)] = \sum_x \phi(x)p(x | \theta) \)

- Learning: Find model parameters matching data moments
 This is the inverse of the mapping defining inference.
 Maximum Likelihood (ML):
 \(\hat{\mu} = \frac{1}{L} \sum_{\ell=1}^{L} \phi(x^{(\ell)}) \)
Posterior distribution:
\[
p(\theta \mid x^{(1)}, \ldots, x^{(L)}, \lambda) = \frac{p(x^{(1)}, \ldots, x^{(L)} \mid \theta, \lambda) p(\theta \mid \lambda)}{\int_{\Theta} p(x^{(1)}, \ldots, x^{(L)} \mid \theta, \lambda) p(\theta \mid \lambda) \, d\theta} \propto p(\theta \mid \lambda) \prod_{\ell=1}^{L} p(x^{(\ell)} \mid \theta)
\]

Predictive likelihood:
\[
p(\bar{x} \mid x^{(1)}, \ldots, x^{(L)}, \lambda) = \int_{\Theta} p(\bar{x} \mid \theta) p(\theta \mid x^{(1)}, \ldots, x^{(L)}, \lambda) \, d\theta
\]

Theorem 2.1.2. Let \(p(x \mid \theta) \) denote an exponential family with canonical parameters \(\theta \), and \(p(\theta \mid \lambda) \) a corresponding prior density. Given \(L \) independent, identically distributed samples \(\{x^{(\ell)}\}_{\ell=1}^{L} \), consider the following statistics:

\[
\phi(x^{(1)}, \ldots, x^{(L)}) \triangleq \left\{ \frac{1}{L} \sum_{\ell=1}^{L} \phi_{a}(x^{(\ell)}) \mid a \in A \right\}
\]

These empirical moments, along with the sample size \(L \), are then said to be parametric sufficient for the posterior distribution over canonical parameters, so that

\[
p(\theta \mid x^{(1)}, \ldots, x^{(L)}, \lambda) = p(\theta \mid \phi(x^{(1)}, \ldots, x^{(L)}), L, \lambda)
\]

Equivalently, they are predictive sufficient for the likelihood of new data \(\bar{x} \):

\[
p(\bar{x} \mid x^{(1)}, \ldots, x^{(L)}, \lambda) = p(\bar{x} \mid \phi(x^{(1)}, \ldots, x^{(L)}), L, \lambda)
\]
Learning with Conjugate Priors

\[
p(x \mid \theta) = \nu(x) \exp \left\{ \sum_{a \in A} \theta_a \phi_a(x) - \Phi(\theta) \right\}
\]
\[
\Phi(\theta) = \log \int \nu(x) \exp \left\{ \sum_{a \in A} \theta_a \phi_a(x) \right\} \, dx
\]
\[
p(\theta \mid \lambda) = \exp \left\{ \sum_{a \in A} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta) - \Omega(\lambda) \right\}
\]
\[
\Omega(\lambda) = \log \int \exp \left\{ \sum_{a \in A} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta) \right\} \, d\theta
\]

Conjugate priors have matched functional forms.

Proposition 2.1.4. Let \(p(x \mid \theta) \) denote an exponential family with canonical parameters \(\theta \), and \(p(\theta \mid \lambda) \) a family of conjugate priors defined as in eq. (2.28). Given \(L \) independent samples \(\{x^{(\ell)}\}_{\ell=1}^{L} \), the posterior distribution remains in the same family:

\[
p(\theta \mid x^{(1)}, \ldots, x^{(L)}, \lambda) = p(\theta \mid \bar{\lambda})
\]

(2.31)

\[
\bar{\lambda}_0 = \lambda_0 + L \quad \bar{\lambda}_a = \frac{\lambda_0 \lambda_a + \sum_{\ell=1}^{L} \phi_a(x^{(\ell)})}{\lambda_0 + L} \quad a \in A
\]

(2.32)

For an exponential family, the conjugate prior is defined by:

- Prior expected values \(\lambda_a \) of the \(d \) sufficient statistics
- A measure of confidence in those prior expectations, expressed as a positive number of \textit{pseudo-observations} \(\lambda_0 \)
Learning with Conjugate Priors

\[p(x \mid \theta) = \nu(x) \exp \left\{ \sum_{a \in A} \theta_a \phi_a(x) - \Phi(\theta) \right\} \]

\[\Phi(\theta) = \log \int_x \nu(x) \exp \left\{ \sum_{a \in A} \theta_a \phi_a(x) \right\} \, dx \]

\[p(\theta \mid \lambda) = \exp \left\{ \sum_{a \in A} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta) - \Omega(\lambda) \right\} \]

\[\Omega(\lambda) = \log \int_{\Theta} \exp \left\{ \sum_{a \in A} \theta_a \lambda_0 \lambda_a - \lambda_0 \Phi(\theta) \right\} \, d\theta \]

Proposition 2.1.4. Let \(p(x \mid \theta) \) denote an exponential family with canonical parameters \(\theta \), and \(p(\theta \mid \lambda) \) a family of conjugate priors defined as in eq. (2.28). Given \(L \) independent samples \(\{x^{(\ell)}\}_{\ell=1}^L \), the posterior distribution remains in the same family:

\[p(\theta \mid x^{(1)}, \ldots, x^{(L)}, \lambda) = p(\theta \mid \bar{\lambda}) \] (2.31)

\[\bar{\lambda}_0 = \lambda_0 + L \quad \bar{\lambda}_a = \frac{\lambda_0 \lambda_a + \sum_{\ell=1}^L \phi_a(x^{(\ell)})}{\lambda_0 + L} \quad a \in A \] (2.32)

Integrating over \(\Theta \), the log–likelihood of the observations can then be compactly written using the normalization constant of eq. (2.29):

\[\log p(x^{(1)}, \ldots, x^{(L)} \mid \lambda) = \Omega(\bar{\lambda}) - \Omega(\lambda) + \sum_{\ell=1}^L \log \nu(x^{(\ell)}) \] (2.33)

- **Closed form for posterior distribution.**
- **Closed form for marginal likelihood.**
Bayes Learning of Categorical Distributions

Categorical Distribution: Single roll of a (possibly biased) die

\[
\text{Cat}(x \mid \theta) = \prod_{k=1}^{K} \theta_k^{x_k} \quad x_k \in \{0, 1\}, \quad \sum_{k=1}^{K} x_k = 1.
\]

\[
p(x^{(1)}, \ldots, x^{(L)} \mid \theta) = \prod_{k=1}^{K} \theta_k^{N_k} \quad N_k = \sum_{\ell=1}^{L} x^{(\ell)}_k
\]

Dirichlet Prior Distribution:

\[
p(\theta) = \text{Dir}(\theta \mid \alpha) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}
\]

Dirichlet Posterior Distribution:

\[
p(\theta \mid x) \propto \prod_{k=1}^{K} \theta_k^{N_k + \alpha_k - 1} \propto \text{Dir}(\theta \mid N_1 + \alpha_1, \ldots, N_K + \alpha_K)
\]

Prior is conjugate to likelihood because posterior distribution in same family.
Normal (Gaussian) Random Variables

\[p(x) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2} \]

\[E[X] = \mu \]
\[\text{Var}[X] = E[(X - \mu)^2] = \sigma^2 \]
\[\sqrt{\text{Var}[X]} = \sigma \] is the standard deviation

- Standard deviations provide confidence intervals:

\[\int_{\mu-\sigma}^{\mu+\sigma} \mathcal{N}(x \mid \mu, \sigma^2) \, dx \approx 0.68 \]
\[\int_{\mu-2\sigma}^{\mu+2\sigma} \mathcal{N}(x \mid \mu, \sigma^2) \, dx \approx 0.95 \]
\[\int_{\mu-3\sigma}^{\mu+3\sigma} \mathcal{N}(x \mid \mu, \sigma^2) \, dx \approx 0.997 \]
Bayesian Learning of Gaussians

Scalar Gaussian Likelihood Function:

\[p(x \mid \mu) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} \]

Assume variance \(\sigma^2 \) is known and fixed.

Gaussian Prior Distribution:

\[p(\mu) = \mathcal{N}(\mu \mid \mu_0, \sigma_0^2) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left\{ -\frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right\} \]

Gaussian Posterior Distribution: Prior is conjugate to likelihood.

\[p(\mu \mid x^{(1)}, \ldots, x^{(L)}) = \mathcal{N}(\mu \mid \mu_L, \sigma_L^2) \]

\[\mu_L = \frac{\sigma^2}{L\sigma_0^2 + \sigma^2} \mu_0 + \frac{L\sigma_0^2}{L\sigma_0^2 + \sigma^2} \bar{x}_L \]

\[\frac{1}{\sigma^2} = \frac{1}{\sigma_0^2} + \frac{L}{\sigma^2} \]

\[\bar{x}_L = \frac{1}{L} \sum_{\ell=1}^{L} x^{(\ell)} \]
Posterior Mean versus Empirical Mean

Optimal Estimator:
Posterior mean, Posterior mode, & Posterior median

\[\hat{\mu} = \mu_L = E[\mu \mid x] \]

\[\mu_L \rightarrow \bar{x}_L \text{ as } L \rightarrow \infty \]

Example:
Posterior given varying amounts of data \(N=L \)

\[\mu = 0.8 \]
\[\sigma^2 = 0.1 \]

Gaussian Posterior Distribution:

\[p(\mu \mid x^{(1)}, \ldots, x^{(L)}) = \mathcal{N}(\mu \mid \mu_L, \sigma_L^2) \]

\[\mu_L = \frac{\sigma^2}{L\sigma_0^2 + \sigma^2\mu_0} + \frac{L\sigma_0^2}{L\sigma_0^2 + \sigma^2}\bar{x}_L \]

\[\frac{1}{\sigma_L^2} = \frac{1}{\sigma_0^2} + \frac{L}{\sigma^2} \]

\[\bar{x}_L = \frac{1}{L} \sum_{\ell=1}^{L} x^{(\ell)} \]
Impact of Prior Variance

Example: Posterior given same single observation, for two different priors.

$$\mu_L \rightarrow \bar{x}_L \text{ as } \sigma_0^2 \rightarrow \infty$$

Gaussian Posterior Distribution:

$$p(\mu \mid x^{(1)}, \ldots, x^{(L)}) = \mathcal{N}(\mu \mid \mu_L, \sigma_L^2)$$

$$\mu_L = \frac{\sigma^2}{L\sigma_0^2 + \sigma^2} \mu_0 + \frac{L\sigma_0^2}{L\sigma_0^2 + \sigma^2} \bar{x}_L$$

$$\frac{1}{\sigma^2_L} = \frac{1}{\sigma_0^2} + \frac{L}{\sigma^2}$$

$$\bar{x}_L = \frac{1}{L} \sum_{\ell=1}^{L} x^{(\ell)}$$
Aside: Sums of Exponential Variables

\[p_{X_i}(x) = \lambda e^{-\lambda x}, \ x \geq 0. \]

\[Y = \sum_{i=1}^{n} X_i \]

Gamma PDF:

\[p_Y(y) = \frac{\lambda^n}{(n-1)!} y^{n-1} e^{-\lambda y} \]

Approximately Gaussian for large \(n! \)
Bayesian Learning of Variances

Scalar Gaussian Likelihood Function:

\[p(x \mid \lambda) = \mathcal{N}(x \mid \mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp \left\{ -\frac{\lambda}{2} (x - \mu)^2 \right\} \]

Assume mean \(\mu\) is known and fixed.

Gamma Prior Distribution on Inverse Variance (precision):

\[p(\lambda) = \text{Gamma}(\lambda \mid a_0, b_0) = \frac{b_0^{a_0}}{\Gamma(a_0)} \lambda^{a_0-1} \exp\{-b_0 \lambda\} \]

\[E[\lambda] = \frac{a}{b} \]

\[\text{Var}[\lambda] = \frac{a}{b^2} \]
Bayesian Learning of Variances

Scalar Gaussian Likelihood Function:

\[p(x \mid \lambda) = \mathcal{N}(x \mid \mu, \lambda^{-1}) = \sqrt{\frac{\lambda}{2\pi}} \exp \left\{ -\frac{\lambda}{2} (x - \mu)^2 \right\} \]

Assume mean \(\mu \) is known and fixed.

Gamma Prior Distribution on Inverse Variance (precision):

\[p(\lambda) = \text{Gamma}(\lambda \mid a_0, b_0) = \frac{b_0^{a_0}}{\Gamma(a_0)} \lambda^{a_0-1} \exp\{-b_0 \lambda\} \]

Gamma Posterior Distribution: \hspace{1em} \text{Prior is conjugate to likelihood.}

\[p(\lambda \mid x^{(1)}, \ldots, x^{(L)}) = \text{Gamma}(\lambda \mid a_L, b_L) \]

\[a_L = a_0 + \frac{L}{2} \hspace{1em} b_L = b_0 + \frac{L}{2} \bar{\sigma}^2 \hspace{1em} \bar{\sigma}^2 = \frac{1}{L} \sum_{\ell=1}^{L} (x^{(\ell)} - \mu)^2 \]
Multivariate Gaussian Distribution

\[\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{N/2}} \frac{1}{|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

\textbf{Moment Parameterization:} Mean & Covariance

\[\mu = \mathbb{E}[x] \in \mathbb{R}^{N \times 1} \]
\[\Sigma = \mathbb{E}[(x - \mu)(x - \mu)^T] = \mathbb{E}[xx^T] - \mu\mu^T \in \mathbb{R}^{N \times N} \]

For simplicity, assume covariance positive definite & invertible.

\textbf{Information Parameterization:} Canonical Parameters

\[\mathcal{N}(x \mid \mu, \Sigma) \propto \exp \left\{ -\frac{1}{2} x^T \Sigma^{-1} x + \mu^T \Sigma^{-1} x - \frac{1}{2} \mu^T \Sigma^{-1} \mu \right\} \]
\[\mathcal{N}^{-1}(x \mid \vartheta, \Lambda) \propto \exp \left\{ -\frac{1}{2} x^T \Lambda x + \vartheta^T x \right\} \propto \exp \left\{ \sum_{s=1}^{N} \vartheta_s x_s - \frac{1}{2} \Lambda_{ss} x_s^2 - \sum_{s \neq t} \Lambda_{st} x_s x_t \right\} \]

Recall general exponential family form:

\[p(x \mid \theta) = \exp \{ \theta^T \phi(x) - \Phi(\theta) \} \]
The Wishart distribution generalizes gamma to positive definite matrices.

For multivariate normal, conjugate prior is Wishart on inverse covariance, and multivariate Gaussian (with dependent covariance) on mean.
Normal-Inverse-Wishart Prior Distributions

\[\bar{\kappa} = \kappa + L \]
\[\bar{\nu} = \nu + L \]
\[\bar{\kappa} \bar{\vartheta} = \kappa \vartheta + \sum_{\ell=1}^{L} x^{(\ell)} \]
\[\bar{\nu} \bar{\Delta} = \nu \Delta + \sum_{\ell=1}^{L} x^{(\ell)} x^{(\ell)T} + \kappa \vartheta \vartheta^T - \bar{\kappa} \bar{\vartheta} \bar{\vartheta}^T \]

\[p(\mu, \Lambda | \kappa, \vartheta, \nu, \Delta) \propto |\Lambda|^{-\left(\frac{\nu + d}{2} + 1\right)} \exp \left\{ -\frac{1}{2} \text{tr}(\nu \Delta \Lambda^{-1}) - \frac{\kappa}{2} (\mu - \vartheta)^T \Lambda^{-1} (\mu - \vartheta) \right\} \]