Using Visual Texture for Information Display
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Results from vision research are applied to the synthesis of visual texture for the purposes of
information display. The literature surveyed suggests that the human visual system processes
spatial information by means of parallel arrays of neurons that can be modeled by Gabor
functions. Based on the Gabor model, it is argued that the fundamental dimensions of texture for
human perception are orientation, size (1 /frequency), and contrast. It is shown that there are a
number of trade-offs in the density with which information can be displayed using texture. Two
of these are (1) a trade-off between the size of the texture elements and the precision with which
the location can be specified, and (2) the precision with which texture orientation can be specified
and the precision with which texture size can be specified. Two algorithms for generating texture
are included.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image
Generation— display algorithms; 1.3.6 [Computer Graphics]: Methodology and Techniques
General Terms: Human Factors

Additional Key Words and Phrases: Gabor functions, information display, scientific visualization,
texture, visualization

1. INTRODUCTION

A typical graphic information display, such as a computer screen, provides
two spatial dimensions and three color dimensions. For example, we might
choose to depict population density, altitude, and rainfall (using three color
dimensions) on a map of North America (using two spatial dimensions).
Actually, bivariate (let alone trivariate) chromatic maps are notoriously
difficult to read [Wainer and Francolini 1980]. To display information with
high dimensionality, more display channels are needed. Possible channels
include time varying images, representing a third spatial dimension with
perspective and other depth cues (a good bet for altitude), and texture, the
topic of this paper. Though texture must be portrayed through the space and
color dimensions, we easily distinguish, say, the texture of a tweed overcoat
from the coat’s gross shape and general color.
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4 . C. Ware and W. Knight

This paper develops a mathematical model for texture that is based on
neurological and psychophysical research. The model is built with data
display in mind. It describes the properties of graphical texture primitives
called textons [Julesz 1975).

2. NEURAL SPATIAL FREQUENCY DETECTORS

In vision research, most mathematical theories of texture fall into two
classes: those based on spatial-frequency analysis, and those based on proba-
bility and correlations between neighboring pixels or texture elements. This
study is spatial-frequency based. For exposition of the other approach, we
mention Beck [1983] and Julesz [1975].

The past two decades have seen much exploration of the response of human
vision to sinusoidal or similar gratings (such as in Figure 1) varying in one
dimension only, commencing with the now classic papers of Campbell and
Robson [1968] and Blakemore and Campbell [1969]). The gratings vary in
three dimensions: frequency, orientation, and contrast (amplitude). Based on
this research, it was proposed that the human vision system has “channels”
selectively sensitive to spatial frequency and orientation. An early conjecture
that the vision system might be doing a global Fourier analysis has changed
to the view that the vision system examines frequency and orientation on a
local basis [Daugman 1984].

2.1 Contrast Sensitivity

Figure 2 shows human threshold sensitivity to grating patterns, in terms of
the contrast needed for a texture to be perceived as a function of spatial
frequency [Campbell and Robson 1968]. The frequency of a pattern is the
number of pattern cycles per unit angle (usually degrees) subtended by the
eye. We are most sensitive to patterns whose period is approximately 2
cycles /degree. (100 times as much contrast will be needed for a 30-cycles /de-
gree pattern to be perceived as for a 3-cycles/degree pattern.) The sensitivity
curve restricts us to a range from roughly 1 to 10 cycles /degree. Assuming 30
pixels /cm at a viewing distance of 75 e¢m, this translates to a useful wave-
length range of approximately 4 to 40 pixels.

2.2 Orientation and Size

A number of electrophysiological and psychophysical experiments indicate
that the brain contains large arrays of neurons that filter for orientation and
size information at each point in the visual field [Hubel and Wiesel 1968].
These neurons are sensitive to elongated and oriented shapes, for example,
those of Figure 3. They also vary in both their preferred orientation sensitiv-
ity and preferred spatial sensitivity (they are said to have spatial and
orientation tuning). These neurons are held to be responsible for most of the
psychophysical results discussed here. Since, according to this model, the
output from a single neural processor will not allow discrimination between
changes in orientation, size, or contrast of the stimulus pattern, there must
be a higher level of processing to discriminate such variation. There is some

ACM Transactions on Graphics, Vol. 14, No. 1, January 1995.



Using Visual Texture for Information Display . 5

Fig. 1. Sine grating.
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evidence for a higher level of processing that separates adjacent areas filled
by different textures [Chua 1990; Sagi 19901.

The basic neural detectors are broadly tuned with respect to orientation
and size. Sensitivity in orientation appears to be about +30° [Blake and
Holopigan 1985; Daugman 19841. The width of the spatial frequency band
selected by a detector may be a size change by a factor of ten [Wilson and
Bergen 1979] or a factor of four [Daugman 19841, and the number of
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frequency channels has been variously estimated as between four and ten
[Caelli and Moraglia 1985; Harvey and Gervais 1981; Wilson and Bergen
1979]. However, higher discrimination resolutions are achieved by the neural
differencing of the outputs of broadly tuned detectors, much as fine color
discrimination is achieved neurally by differencing of the outputs of the cone
receptors. The resolvable size difference (1/frequency) appears to be about
1/8 of an octave (a size change of 9 percent), which yields 24 resolvable size
steps for the useful 3-octave range [Caelli and Bevan 1983; Caelli et al. 1983;
Heeley 1991]. The resolvable orientation difference appears to be approxi-
mately 5° [Caelli et al. 1983]. Observers have a higher ability to discriminate
oriented patterns that are closer to vertical and horizontal than to oblique
orientations. This is attributed to fewer, more broadly tuned neural detectors
sensitive to oblique orientations [Mitchell et al. 1967].

3. GABOR FUNCTIONS

Most of the theoretical accounts of the textual perception discussed above are
based on a class of neurons, originally called “bar” and “edge” detectors,
found in the visual cortex of mammals [Hubel and Wiesel 1968]. (David
Hubel and Torstein Wiesel received Nobel prizes in 1981 for pioneering this
work.) Mathematical models of these have been developed [Garner and
Felfoldy 1970; Heeley 1991]. A mathematical model based on the Gabor
function accounts for a variety of experimental results [Chua 1990; Jones and
Palmer 1987; Marcelja 1980; Nothdurft 1991; Porat and Zeevi 1989).

A Gabor function is the product of a Gaussian envelope and a sinusocidal

grating:
exp(—3(x* + y*)) exp(jfoy), (0

where x and y are space coordinates, f,, is a frequency, and j = V[ —1], as
usual. The Gaussian window defines location by limiting extent; the sinusoid
defines grating orientation and frequency.

The Gabor function (1) is complex; we use either the real part (cosine
Gabor),

exp(—3(x% + y%)) cos(fp ), (2)
or the imaginary part (sine Gabor),
exp(—3(x? + y)) sin(f, y). (3)

Figure 4 parts a and b illustrate the cosine (2) and sine (3) Gabor functions,
respectively.

In human neural receptive fields, the window and cosine components tend
to be coupled so that low-frequency cosine components have large windows
and high-frequency components have small windows. Caelli and Moraglia
[1985] did a study to assess the ratio of window width to spatial frequency of
the grating component. They concluded that the window profile, to 1/e decay
values, spans approximately two cycles of the grating: This happens when
wy = m/ V2.
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Fig. 4. (a) Cosine and (b} sine Gabors. The

(a) cosine Gabor is symmetrical. However, the dif-
ference is not obvious at first glance, indicating
that we are not very sensitive to phase differ-
ence.

(b)

The window of (1)-(3) is centered at the origin and is circular in outline.
We want to do transformations, move the window, change its size, elongate it
to an ellipse, and rotate it to other orientations.

Changing origin is done by replacing x and y by

x=x - xg,
- (4)

Y =Y Yo
The size of the window can be adjusted by multiplying x and y by scaling
factors. Since bar and edge detectors can be elongated and have an elliptical
rather than a circular outline, we may want to apply different scalings to x
and y:

(5)

’

Yy =

o Q| R
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Rotation is done the usual way:

x'=xcos # —ysin 0,

' . (6)
¥y =xsin 6 + ycos 0.
Combining all of these transformations,
x—x y - .
x' = ocosﬁ— Osme,
a
7
, X T X Yy~ Yo (
y = sin 8 + cos 6.
a

These transformed Gabor functions can approximate the detectors found
electrophysiologically. Figure 4 features pictures of some Gabor functions.

Other evidence for the appropriateness of the Gabor model comes from
studies of texture segmentation. When a photograph of a natural scene is
examined, different patches appear to be distinct and separate because of
their texture. A successful texture segmentation method has been based on
parallel processing by a set of sized and oriented Gabor filters [Bovik et al.
1990]. The output of this process is a set of maps, one for each size-orienta-
tion combination. These maps are then low pass filtered, and a segmentation
is based on the dominant map for a given region. The results closely model
human segmentation.

Rewriting formulas in vector form sometimes makes them shorter. The
vector form of (1) becomes

exp( ~ %Iliillz) exp(jf"0 . i’) , (8)

where % = (x, y), f, = (0, f,) for a grating in the y direction, and (f,, 0) for a
grating in the x direction.

4. GABOR DETECTORS AND STIMULI

Detection is modeled as an inner product between detector and signal,
making the response of detector D to signal S

response = fD(i')S(iZ) dXx. 9

A detector will be more sensitive to some signals than to others. It is
reasonable to model this sensitivity as

) response
sensitivity = —IsT (10)

(The norm of a function is taken as the square root of the inner product of the
function with itself.)
Sensitivity is highest for a signal of the same shape as the detector. This
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follows from the Cauchy-Schwartz inequality,

UD(i)S(i)dﬁ <IDOIISC), (11)

equality obtaining when D and S are the same shape. For example, a Gabor
cosine detector is optimal for the same Gabor casine stimulus, but works
poorly with its dual Gabor sine stimulus. Thus, the optimal texton for a
Gabor detector is a Gabor texton, and vice versa.

5. SPACE-FREQUENCY DUALITY

We can represent an image in either the space or frequency domain. Both are
relevant in a vision system entailing frequency sampling localized in space
[Daugman 1984]. The second dogma of Barlow [1972] asserts that the visual
system is simultaneously optimized in both spatial and frequency domains.
We should consider space and frequency together, looking simultaneously at
the spatial form and its frequency dual (Fourier transform) of any detector or
textons. A convenient model should move easily between space and fre-
quency; Gabor functions do just this since the Fourier transform of any Gabor
function is another Gabor function. It has been claimed [Daugman 1985] that
the Gabor function is optimal in that it jointly optimizes sensitivity in space
and frequency domains as Barlow’s dogma would require.

5.1 Gabor Functions in Space and Frequency

The frequency image of a Gabor function is another Gabor function with the
roles of space and frequency reversed. For location X, and frequency f,, the
space form is a function of the space vector X,

exp( — 3% — %, I”) exp(jf, - (% - %,)). (12)
and the frequency form is a function of the frequency vector f
exp( — M+ f:(,IIQ) exp(jii0 : (f’+ f"(,\)), (13)

obtained by exchanging x and w throughout.

Any geometric transformation of a space-domain function induces a dual
transformation in its frequency-domain Fourier transform. These dualities
are listed in Table 1. Formulas corresponding to these are in the Appendix.

The real and imaginary parts of (12) each consist of two Gabors,

exp(jf’“ : x) + exp( —jfy x)
) 2 ’ (14)
exp(jfO . x’) - exp( —jf;, . x)
3 .
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Table I. Dual Transformations

Space domain Frequency domain
Change position Multiply by frequency grating
Multiply by frequency grating Change position

Scale uniformly by s Scale uniformly by 1/s

Scale axes by different factors Scale axes by reciprocal factors
Rotate by 6 Rotate by ¢

Scale amplitude by ¢ Scale amplitude by ¢

These are the sum and difference, respectively, of two complex exponentials,
so the Fourier transforms feature two windows:

exp( - 3IIf + £,I°) + exp( — 31 — £,I*)
2

exp( — $If + £,l1*) — exp( - 3lif - £,°)
2j )

(15)

and

5.2 Trade-Offs in Information Density: An Uncertainty Principle

Daugman [1985] showed a fundamental uncertainty principle relating to
perception of position, orientation, and frequency: Given a fixed number of
detectors, resolution in size (1/frequency) can be traded for orientation and
position. The same principle applies to the synthesis of texture for data
display. In order to convey precise information in the frequency domain, the
texton must be relatively large, but this makes it take up a lot of room and,
hence, reduces information in the space domain. A gain in one is a loss in the
other.

Figure 5 illustrates the trade-offs in terms of information display when
scale is manipulated. Figure 5a and b shows that enlargement of the Gauss-
ian envelope in the space domain shrinks the envelope in the frequency
domain; this means that a low spatial information density can be coupled
with a precise specification of texture size, but both are not simultaneously
possible. Figure 5¢ and d shows that stretching the Gaussian envelope
perpendicular to the bands of the sine grating increases the wavelength
specificity, while decreasing the orientation specificity, and that the converse
is true. Thus given a constant data density, either orientation or size can be
specified precisely, but not both. Note that the trade-offs between texton size,
texton orientation, and information density are general in that they apply to
any texture elements and not only to Gabor textons.

6. THE OSC TEXTURE SPACE

So far, we have made some observations concerning the suitability of a
simplified class of Gabor functions as primitives in the generation of texture.
We only need to add an amplitude or a contrast term c¢ in order to provide an
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ideal texton with three parameters controlling orientation (O), size (S), and
contrast (C):

cexp(—lllsRifllz)exp(Lsf" Ri') (16)
2 J2 oo
Here, R is a rotation matrix that rotates to orientation O.

We call the space of these functions the OSC (orientation, scale, contrast)
texture space, and we claim that the three parameters, rotation R, size s, and
contrast ¢, capture the principal orderable, perceptual dimensions of visual
texture in a way that is easy to use, much as the HSV or RGYB color spaces
{Smith 1979; Ware and Cowan 1990] make color easily accessible to computer
graphics for the purposes of information display.

6.1 Scaling the OSC Dimensions

Uniform color spaces have been found to have considerable utility in data
display. They transform color space so that equal metric distances correspond
to perceptual distances and, in this way, allow the construction of color sets
that more correctly represent a given set of data values. A uniform texture
space is also a possibility, and at least to a first approximation, the basic
scalings are clear.

—Orientation. This is scaled linearly over a range of 0 to 7. Because of the
two-axis symmetry of Gabor textons, only 180° of orientation are available.
However, if a directional texton, for example, a fish shape, is used, then
360° will be unambiguously available. There is evidence that humans are
less sensitive to oblique orientation than to vertical or horizontal orienta-
tion. However, this departure is small, and a linear mapping between data
and orientation is probably good enough for a first approximation.

—Size. This is scaled exponentially over a range of 2 to 16 cycles/degree.
There is a limited practical spatial frequency range: Lower than 2
cycles /degree, the textons are so large that they become objects rather
than texture elements; higher than 16 the textons start to become invisi-
ble. This allows for three doublings in size and translates to wavelengths of
between 1/2 and 1/16 degrees of visual angle [Ware and Knight 1992].

—Contrast (amplitude). Contrast should be scaled exponentially [Wyszecki
and Stiles 1982]. A reasonable useful range for ¢ = (I max — I min)/
(I max + I min) would appear to be 0.1 < ¢ < 1.0.

Figure 6 shows a texture field modulated in two dimensions, horizontally by
size and vertically by orientation. Figure 7 shows the same texture field with
contrast modulated radially.

If our texture model is correct in its basic form, we have six variables to be
used to display map data: three texture dimensions and three color dimen-
sions. Of these six only five are simultaneously usable since one of the color
dimensions must be applied to texture.

It should be understood that this is not intended to be a complete model of
texture perception. Texture has a large number of degrees of freedom, and
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Fig. 6. Texture field swept horizontally by size and vertically by orientation. Algorithm 1was
used to generate this pattern.

7=\

g ,.-.._,,_w

Fig. 7. Texture field swept horizon-
tally by size, vertically by orientation,
and radially by contrast. Algorithm 1
was used to generate this pattern.

other factors such as regularity, phase information, local symmetry, and
combinations of spatial frequencies are all perceptually significant. The claim
here is that these three dimensions of texture are primary in the sense that
variation according to these dimensions will be more visible than variation
according to other dimensions. We also claim that these dimensions are
perceptually ordered: A medium-contrast texture will lie between a high- and
a low-contrast texture; a medium-grained texture will lie between a large-
and small-grained textures; a texture oriented at 45” will clearly lie between
textures oriented at 0” and 90°.
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7. TEXTURE SYNTHESIS

One convenient way to make textures is to put points in the space the texture
is to occupy and then to place a texton at each point. (Mathematically, this is
a convolution between a point process and a basic shape.) The points can be
placed in a regular pattern, rectangular, hexagonal, or whatever; or points
can be placed at random, by a Poisson or other process. The Poisson process
has two advantages over regular grids:

(1) It is isotropic: Unlike a rectangular pattern, no particular orientation is
emphasized.

(2) A regular grid generates aliasing, that is, beat frequencies between the
frequency of the grid and that of the Gabor detector; the Poisson process,
lacking clearly defined frequencies, does not.

7.1 Texture Synthesis Algorithms

Assuming that the OSC model is essentially correct, we are left with the
problem of synthesizing textures in such a way that the orientation, size, and
contrast of a texture field can be varied continuously. An algorithm is
required with these design constraints:

(1) A texton at a particular location should be sized, oriented, and con-
trasted with its background according to the local information to be
displayed (from between one and three univariate maps).

(2) Texton density should be inversely related to texton size so that the ratio
of texton to background is constant.

(3) Textons should be randomly distributed (to avoid aliasing artifacts).

We present two such algorithms. The first is designed to use Gabor functions
as primitives, while the second is designed to use other patterns as textons.
In both algorithms we sample the image plane randomly using a modified
Poisson process, and splatter textons shaped and scaled according to the local
data attributes. Our two methods differ in the way splatter density is made
inversely proportional to the texton size and in the kind of textons we use.

7.2 Algorithm 1

Algorithm 1 (Figure 8) is similar to the spot noise method developed by van
Wijk [1991], except that far fewer texture stampings are necessary because
the Gabor primitive is smooth. The algorithm uses a Poisson sampling of the
data plane modified so that the density is inversely proportional to the texton
size.

Modifications can be made to this algorithm to increase speed. We have
found it advantageous to precompute a two-dimensional array of Gabor
textons varying size in one dimension and orientation in the other, using
symmetry to reduce table storage. Contrast is applied in a last pass through
Texture buffer, prior to converting it into an 8-bit image for display. Figure
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Major Variables

DisplayBuffer (* A two dimensional array the sizc of the data array *)
TextureBuffer (* A two dimensional array the size of the dala array *)
p: (* A position if the Display_Buffer *)
n_samples (* The number of samples of the data plane *)

MapA, MapB, MapC  (* Two dimensional arrays containing the data to be represented. *)
(* Any two of these may be null {and replaced by a constant.) *)

External procedures
RandomPixel (* Random Pizel returns a random pizel position *)
UniformRandom (* UniformRandom returns a random variable of [0,1] *)

begin Texture
Zero TextureBuffer
(* Sum Gabor Tezrions into the Terture Buffer *)
for i — | to n_samples
p ~— RandomPixel(p)
TextonArea — texton area specified according to MapA
(* Make terton densily vary inversely with lexton size *)
if UniformRandom() < (Area of Smallest Texton)/TextonArea
Size textons according to MapA
Orient textons according to MapB
Contrast  texton according to MapC
Sum Gabor texton into TextureBuffer centered at position p
end if
(* Scale the terture for display typically to the integer range (0..255) *)
FrameBuffer — Mean Luminance + TextureBuffer x Luminance_scale
end for
end Texture

Fig. 8. Algorithm 1.

9 illustrates the magnetic field produced by two dipoles using Algorithm 1. In
this figure field orientation is mapped to texton orientation, and field strength
is mapped to the inverse of texton size and texton contrast.

In our experiments with synthetic texture, we have used formula (16) as
the texture primitive. However, if better size resolution were, for example,
desired the parameters described in eq. (6) could be added to trade off
resolution in one texture parameter for another. Using Gabor primitives
results in a “pure” texture according to the theory outlined in this paper, and
this texture should be optimal in the sense of providing an unambiguously
oriented, sized, and contrasted texture. However, the basic model applies to
any texture created with elongated and oriented textons, although the results
may be less perceptually distinct. Non-Gabor textons have an advantage in
the possibility of using texton shape to highlight qualitative aspects of the
data. Thus, an elliptical texton might be used in one region to distinguish it
from another region covered with rectangular textons.

7.3 Algorithm 2

The two-pass algorithm in Figure 10 is designed to synthesize textures with
simple geometric textons. The first pass is used to establish texton spacing,
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Fig. 9. Shows the magnetic field gener-
ated by two dipoles. Field orientation is —
mapped to texture orientation, and field
strength is mapped to texture contrast
and inversely to texture size. Texture is
displayed using the luminance dimen-
sion, while field potential is displayed by
a color sequence.

and a second pass is used to draw them. On the first pass, pixels in the frame
buffer are sampled in a random order, and a texton of the appropriate size
and orientation is displayed only if that location has not been already covered
by a previously drawn texton. A Hits_buffer array records the center
locations of textons that are drawn. The purpose of the first pass is to
establish the density and separation of textons according to the constraints.
On the second pass, the textons are drawn according to the locations stored in
the Hits_buffer, but at a smaller size (usually half).

8. EXAMPLE: AN ILLUSION

We present one concluding example that illustrates both the texture that
results when orientations are randomized and some of the theoretical evi-
dence that human neural processes respond to texture size. Texture-size
contrast is a phenomena where an isolated region of texture is perceptually
distorted by the texture of surrounding regions. This phenomenon is thought
to be caused by lateral interactions between frequency selective regions of the
visual cortex [Blakemore et al. 1970]. In Figure 11 the background texture is
swept from left to right in size. There are two patches of identically sized
textons embedded in this background. The granularity of the patch on the
large texton background appears finer than the granularity of the patch on
the small texton background. The relevance of this demonstration from the
point of view of information display is that texture contrast can cause
distortions in readings of texture-coded data, just as color contrast can cause
distortions in color-coded data [Ware 19881.

9. SUMMARY AND CONCLUSIONS

We have developed a model of the principal orderable dimensions of visual
texture. These dimensions are orientation, size, and contrast. The strongest
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Major Variables

DisplayBuffer (* A two dimensional array the size of the data array *)
HitsBuffer (* A two dimensional array the size of the data *)
p.r (* Positions in the display or hit buffers *)
MapA, MapB, MapC  (* Two dimensional arrays containing the data o be represented. *)

(* Any two of these may be null. *)

begin Texture
Zero HitsBuffer and DisplayBuffer
;‘ First pass to establish texton spacing *)
or p over all pixels do
r — Random(p) (* Random is a pseudo-random permutation mappingp  *)
(* into pizel indices. This assures "random” order. *
if DisplayBuffer[r] = 0 then
Size texton according to MapA
Orient texton according to MapB

Draw a twice texton sized block of 1's centered at position r into the DisplayBuffer
HitsBuffer[r] — 1
end if
end for
(* Second pass o creale the image. *)
Zero DisplayBuffer
for p over all pixels do
if HitsBuffer[p] = 1 then
Size texton according to MapA
Orient  texton according to MapB.
Contrast texton according to MapC.
Draw texton with size, orientation, and contrast appropriate to position p
end if
end for
end Texture

Fig. 10. Algorithm 2.

evidence for this model comes from studies that suggest that a two-dimen-
sional Gabor filter is a good model for the receptive fields of the neurons
underlying texture perception. There are fundamental trade-offs in using
texture for information display, between the precision with which the size
and orientation at a point in a continuously varying texture region can be
specified (or perceived) and the location of that packet of texture information.
If location is specified precisely, then size and orientation can only be
specified imprecisely, and vice versa. Given a constant texton density, if
orientation is specified precisely, then size must be specified proportionately
less precisely. In using texture we are not increasing the information density
over that which is possible using color alone. Rather, we are trading spatial
resolution for an increase in the number of display channels and display
options.

There are many unresolved issues, in particular, those relating to the
semantics of visual texture. Just as the luminance dimension of color space
has certain perceptual characteristics that make it qualitatively different to
the chromatic dimensions of color space, so is texture orientation qualita-
tively different from texture size. For example, texture orientation is useful
for specifying vector field orientation [Van Wijk 1991], but texture contrast
may be more useful to display such things as amount of energy.
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Fig. 11. Size illusion: Background texture varies from small on the left to large on the right.

Two patches of identically sized texture are placed on the left and right of the center. The texture
in the left patch appears larger grained than the texture in the right patch.

Some of the results that can be used to guide the use of visual texture are
already known from studies in visual psychophysics (the review at the
introduction of this paper barely scratches the surface of the available
literature). However, these results are often inaccessible to those needing
design guidelines because they are couched in the jargon of vision research.
Much work is needed to bridge the gap between results in neurophysiology
and psychophysics and the understanding of the designer of data displays.

It is quite clear from our experience that using texture effectively is at least
as difficult as using color effectively, and that well-designed tools are needed
to change the mapping of data variables to display variables. Nevertheless,
the fact that texture has long been found to be essential in cartography
[Bertin 1983] persuades us that a systematic method for manipulating tex-
ture variables in information displays is a significant advance.

APPENDIX. BASIC FOURIER ANALYSIS

This appendix is only a brief introduction. There is further material pre-
sented by Stein [ 19761 and Weaver [ 19831.
A space image, F(X), can be built from frequency gratings as follows:

F&X) = % f?(ﬁ exp( —jf- i’) dw. a7

FAw) is called the Fourier transform of F(x). (Using —j rather than j is
artificial but traditional.) Either F in the space domain or ¥ in the frequency
domain specifies the image. For such an image as ripples on the water, the
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Using Visual Texture for Information Display . 19

Table II. Transformations in the Frequency Domain Induced by Transformations in the
Space Domain

Space Frequency
Formula domain domain
Objective function F and its transform .# F(x) A
Translation in space: Center moved to x,, F(x - x,) expl jf- X 1A
Multiply the space function by a complex expl —jf, - ¥)F(X) FUE - 1)
grating (translation in frequency)
Scale {(by scalar, s) (note the inverse F(sx) .7(f./.s')
scaling in the frequency domain)
Scale by diagonal matrix D F(Dx) AD ) /det(D)
Rotation by R, a rotation matrix F(Rx) FIRDO
specifying orientation O
Amplitude scaling by ¢ (contrast) cF(x) c A8

frequency description can be more economical and easy to manipulate than
the space description. 5{w) is obtained from F(x) by a similar integral,

1 .
FUW) = == [ F(X) exp( £ %) dx. (18)

(The scaling factor, (1/27), can be distributed between transform and in-
verse transform in any way; the symmetric choice is not universal.)

(If F(x) contains a pure sinusoid, #(w) will contain a delta function at the
appropriate frequency, a mathematical complication beyond the scope of this
paper. The delta function can always be approximated by a narrow peak.)

Transformations induced in the frequency domain by some simple transfor-
mations in the space domain are given in Table II.
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