Dynamo: Amazon’s Highly Available Key-Value Store

Christopher Meiklejohn
Jiangnan Shangguan
Problem

- Reliability
 - shopping carts
 - session data
- Scalability
- Availability versus Consistency
 - during failure conditions
Requirements

- Query Model
 - key/value based
- Efficiency
 - 99.9th percentile
- Conflict Resolution
 - Always writable
 - Performed by application
System Architecture

- Partitioning
- Replication
- Versioning
- Membership
- Failure Handling
- Scaling
System Interface

- get(key)
- put(key, context, object)
- MD5
Consistent Hashing

- Scale incrementally
 - Dynamic partitioning
- Ring
- Uniform data and load distribution
 - Virtual nodes
Replication

- Replicate at N virtual nodes
- Preference list (consisting of N virtual nodes)

G. DeCandia et al., (2007) Dynamo: Amazon's highly available key-value store, in SOSP
Data Versioning

- Vector Clocks
- Determine causality

G. DeCandia et al., (2007) Dynamo: Amazon's highly available key-value store, in SOSP
Execution of GET/PUT

- Any node can be a coordinator
 - Coordinator responsible for writing v-clock
- Quorums (R/W)
 - \(R + W > N \)
Handling Failures

- Hinted Handoff
 - Metadata hint for owning node
- “Sloppy Quorums”
 - N healthy nodes
 - starting with preferences list
Replica Repair

- Hinted replicas no longer available
- Anti-entropy synchronization method
 - Merkle trees
 - Starting with partition key space
 - Nodes exchange trees corresponding to common partitions
- Implementation vague
Ring Membership

- Separate explicit mechanism
 - Nodes may be down for maintenance
 - Nodes may be powered up by accident
- Gossip protocol is used to propagate
- Nodes randomly select tokens mapping to virtual nodes for ownership.
 - Ownership transfer happens between nodes no longer responsible for that data
Implementation

- Three main components
 - Request coordination
 - Membership and failure detection
 - Local persistence
Local Persistence

- Pluggable backends
 - Memory backend
 - Berkeley DB
 - MySQL
Request Coordination

- Messaging substrate
- Similar to SEDA (pipelining)
- Heavy use of finite state machines
 - Read coordination
 - eg. send requests, wait for responses, fail, systematic resolution, read repair
 - Write coordination
- Latency requirements allow for any node to coordinate requests.
Resolution Strategies

- Business specific resolution
 - shopping cart
- Timestamp based resolution (ie. LWW)
 - session data
Performance

- Designed for commodity hardware
- Optimize performance using writer thread
 - Object cache
- Durable write quorum (DW)
Partitioning Strategies

Figure 7: Partitioning and placement of keys in the three strategies. A, B, and C depict the three unique nodes that form the preference list for the key k1 on the consistent hashing ring (N=3). The shaded area indicates the key range for which nodes A, B, and C form the preference list. Dark arrows indicate the token locations for various nodes.

G. DeCandia et al., (2007) Dynamo: Amazon's highly available key-value store, in SOSP
Divergence

- Failure scenarios
- High concurrency writes
Thank you!

Questions?