
Comparison of Database Replication
Techniques Based on Total Order Broadcast

Matthias Wiesmann and André Schiper, Member, IEEE

Abstract—In this paper, we present a performance comparison of database replication techniques based on total order broadcast.

While the performance of total order broadcast-based replication techniques has been studied in previous papers, this paper presents

many new contributions. First, it compares with each other techniques that were presented and evaluated separately, usually by

comparing them to a classical replication scheme like distributed locking. Second, the evaluation is done using a finer network model

than previous studies. Third, the paper compares techniques that offer the same consistency criterion (one-copy serializability) in the

same environment using the same settings. The paper shows that, while networking performance has little influence in a LAN setting,

the cost of synchronizing replicas is quite high. Because of this, total order broadcast-based techniques are very promising as they

minimize synchronization between replicas.

Index Terms—Distributed databases, performance attributes, distributed programming.

�

1 INTRODUCTION

DATABASE replication is traditionally handled in two
ways, either with eager replication or with lazy

replication [1]. Eager replication implies an atomic commit-
ment protocol and is slow and deadlock prone. Lazy
replication is efficient, but does not enforce consistency
between the replicas. To address this problem, replicated
databases based on group communication have been
proposed for some time [2], [3], [4]. Those techniques, which
typically replace the two-phase commit protocol [5], [6], [7],
[8], promise better performance [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] and less deadlocks [19] than classical
eager replication, while maintaining strong consistency.

Techniques based on group communication typically rely
on a primitive called total order broadcast.1 This primitive
ensures that messages are delivered reliably and in the same
order on all replicas. While most techniques described in the
literature use total order broadcast, they do not use it in the
same way. Some techniques use a single total order
broadcast, while others need, additionally, a reliable broad-
cast. Moreover, some techniques do the broadcast at the
start of the transaction and some others do it at the end.

Although the performance evaluation of techniques
based on total order broadcast can be found in the literature
[13], [16], they are usually used to present new techniques
and, thus, only compare new techniques to traditional ones,
like distributed locking. For example, in [9], [11], the

certification-based database replication technique is pre-
sented with a rough performance evaluation. The weak
voting technique is presented along with other techniques
that do not enforce one-copy serializability with a perfor-
mance evaluation in [10]. The performance of a prototype
based on Postgres is presented in [16]. A set of replication
techniques based on group communication is presented
with a performance evaluation in [13]. Some of the
techniques, explained in [4], are similar to the ones
presented in [9] and [10].

The performance of a restricted version of active
replication (single operation) is presented in [20] and
compared to voting replication based on two-phase commit,
but without any indication about the workload. The
performance of the certification technique based on a
CORBA middleware is presented in [21].

Because these papers typically compare only a new
technique to traditional techniques like distributed locking,
understanding the relationship between all techniques and
comparing their performance is difficult. In this paper, we
present a performance comparison of the three main
database replication techniques based on total order broad-
cast. We compare these techniques to each other and to
traditional database replication schemes like distributed-
locking, lazy replication, and primary copy. All techniques
were implemented in the same simulation environment and
tested under the same conditions. This allows us to
compare the performance of the different techniques and
to understand their advantages and their weaknesses.
Another shortcoming of existing performance evaluations
is the way they model group communications. In previous
simulations, the execution of group communication proto-
cols (e.g., of total order broadcast) is simulated as a single
atomic operation, that is, the network and the group
communication stacks are, de-facto, considered as a single
shared resource. This hides the complexity of the group
communication subsystem and ignores the interactions
between the communication system and database system

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005 551

. M. Wiesmann is with ATLAS-TDAQ, Division PH, European Organisa-
tion for Nuclear Research, Ch-1211 Genève 23, Switzerland.
E-mail: matthias.wiesmann@a3.epfl.ch.

. A. Schiper is with the Distributed Systems Laboratory, Federal Institute of
Technology in Lausanne, Switzerland, Ch-1015 Lausanne, Switzerland.
E-mail: andre.schiper@epfl.ch.

Manuscript received 30 Apr. 2004; revised 28 Aug. 2004; accepted 6 Oct.
2004; published online 17 Feb. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0125-0404.

1. Holliday et al. [18] present an exception: It relies on causal order
delivery of messages and epidemic communication.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

(for instance, it ignores that the CPU is used both for
processing transactions and sending messages). Our simu-
lations are based on a finer model: low-level resources, e.g.,
the network, are simulated and group communication
protocols are executed inside the simulator. Simulating
the system at a finer granularity makes it possible to
understand what role low-level resources play in the
performance of different replication techniques. This way,
we can understand the influence of the network perfor-
mance on the overall system. The results show that the
design of replication techniques has a serious impact on the
performance of the system, more so than the number of
message “rounds.” We also show that while the cost of a
total order broadcast is low, communication has an impact
on performance because of synchronization issues.

The rest of the paper is structured as follows: Section 2
introduces the communication and database model.
Section 3 introduces the different replication techniques
and discusses how they relate to techniques presented in
the literature. Section 4 presents our simulator and the
general simulation settings. Section 6 presents the different
experiments and their results. Related work is discussed in
Section 7. Section 8 concludes the paper.

2 MODEL

We assume a set of servers S ¼ fs1; . . . ; sng and a database
D. Each server si contains a full copy Di of the database D
(Fig. 1). Server si hosts a local transaction manager; this
manager can execute local transactions, that is, transactions
that update Di. The local transaction manager ensures the
ACID properties of local transactions.

A database replication protocol runs on all servers si 2 S.
The correctness criterion is one-copy serializability [22]: All
copies of D are kept synchronized at all times. We also
consider a set of clients C ¼ fc1 . . . cmg. Clients are the
source of transactions. In order to process a transaction t, a
client c connects to a server sd and submits transaction t to
sd. We call the server sd the delegate for transaction t. For
some replication schemes (primary copy), only one server
(the primary) can act as the delegate server.

The replication techniques we compare in this paper rely
on a group communication primitive called total order
broadcast (the primitive is also called atomic broadcast).
Roughly speaking, messages that are broadcast using this
primitive (which will be denoted by TO-broadcast) are
delivered (which will be denoted by TO-deliver) in the same

order on all destination processes. For example, if two
processes TO-broadcast messages m and m0, all destination
processes TO-deliver either m before m0, or all TO-deliver
m0 before m. The precise specification of total order
broadcast is not relevant here and is therefore omitted.2

The implementation of total order broadcast is also outside
the scope of the paper. However, it is important to note that
the total order broadcast primitives that we consider here
order messages even though processes might crash.

We also assume the existence of a two-phase atomic
commitment protocol (2PC). This protocol is used in the
context of distributed locking.

3 REPLICATION TECHNIQUES

Different techniques for database replication based on total
order broadcast have been proposed. In this paper, we
consider the three most relevant techniques: active replica-
tion, certification based replication, and weak voting replication.
The performance of these techniques will be compared to
the two widely used techniques that do not rely on group
communication, namely, primary copy replication and lazy
replication.

The three techniques based on total order broadcast
ensure one-copy serializability and have in common the
following features:

. They do not rely on an atomic commitment protocol.

. They are update-everywhere replication techniques
[1], i.e., a client c can connect to any server to submit
its transaction.

. They require Oð1Þ network interactions [24].

A technique is said to have Oð1Þ network interactions if
the number of interactions between servers in order to
process a transaction is constant, i.e., independent of the
number of operations in the transaction. Other techniques,
i.e., those that require a number of interactions in the order
of the number of operations in the transaction, are
considered to be very slow, especially if each interaction
is a total order broadcast. Experiments confirm that those
techniques perform very poorly [25] and, therefore, are not
considered here.

3.1 Active Replication

This technique is a direct application of the active
replication technique [26] (also called state machine replica-
tion) to database replication: The whole transaction is put
into a message, and the message is broadcast (total order
broadcast) to the servers. The only difference here is that the
client does not issue the total order broadcast. In a database
setting, clients are usually “thin” and do not have access to
group communication primitives. In our case, the client
sends the transaction to one delegate server that issues the
total order broadcast on behalf of the client.

Fig. 2 illustrates the communication scheme of this
technique. When the delegate server sd receives a transac-
tion t from a client c, the server sd broadcasts t to all servers
using a total order broadcast. All servers then deliver t and
process t; the processing of t must be deterministic. So each

552 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 1. Database replication model.

2. The specification can be found in [23].

server si serializes the transaction in the same position, and

if one server aborts transaction t, then all servers also abort

it. Fig. 3 shows the pseudocode for active replication. An

early version of this technique is presented in [27] and

another variant is presented in [28].
This technique is different from the two following ones

in the sense that it requires a fully deterministic execution of

transactions, i.e., that the point of determinism [29] is at the

beginning of the transaction. This model excludes inter-

active transactions: All operations must be known at the

start of the transaction. Another issue with this technique is

that full transactions are sent to all replicas, including both

read and write sets—this means that reads are executed by

all servers. This negates one of the benefits of replication:

load distribution for read operations.

3.2 Certification-Based Replication

This technique is described in [30] and [11] under the

“database state machine” name. To avoid ambiguities with

active replication technique, we call it certification-based

replication. Technique A4 described in [25] uses a similar

approach.
Fig. 4 illustrates this technique: When the delegate server

sd receives a transaction t from a client c, the server sd
executes transaction t but delays the write operations. When

commit time is reached, transaction t is broadcast to all

servers using a total order broadcast. Upon delivering the

message that contains t, each server executes a deterministic

certification phase. Certification decides if transaction t can

commit or must abort. Fig. 5 shows the pseudocode.
This technique shares the communication requirements

with active replication: Only one total order broadcast is

needed per transaction. This technique does not have the

drawbacks of active replication: It can handle interactive

transactions. On the other hand, this technique is optimistic:

Conflicting transactions might be processed only to be

aborted at the certification phase. This means such

techniques are effective in low-conflict situations.

3.3 Weak Voting Replication

This technique is described in [10], [31] under the “serial-
izability protocol” name. As all techniques in this paper
ensure one-copy serializability, we call it weak voting
replication technique to be consistent with the classification
presented in [29]. Technique A3 presented in [25] is similar
to weak voting.

Fig. 6 illustrates this technique: when the delegate server
sd receives a transaction t from a client c, the delegate server
executes transaction t but delays the write operations. When
commit time is reached, the write set of transaction t is
broadcast to all servers using a total order broadcast. Upon
delivering the message that contains t’s write, the delegate
sever sd can determine if conflicting transactions have been
committed. Based on this information, the delegate server
does a new broadcast containing the outcome of the
transaction (commit or abort)—this broadcast may not be
totally ordered, but must be reliable. Fig. 7 shows the
pseudocode for this technique.

This technique is close to certification-based replication.
The main difference is that the deterministic certification
mechanism is replaced by a weak voting phase, i.e., the
delegate takes the decision to commit or to abort. As it can
rely on information available only to the delegate, the
certification mechanism can be more accurate, but at the
price of an extra broadcast. The voting is said to be weak as
only the delegate server can decide on the outcome of the
transaction. Other servers cannot influence this decision
and must abide by the delegate’s decision.

3.4 Primary Copy Replication

Primary copy is a traditional database replication technique
[1]; it is presented here for comparison purposes. The
technique described here is a cold standby, nonvoting primary
copy technique [29]. This technique is also called passive
replication in the distributed system community.

Fig. 8a illustrates the technique: All transactions are
routed to a primary server sp and the other servers (called
backups) do not accept transactions. The transaction is
processed on the primary and the updates are sent to the
backups using a reliable broadcast. The serialization order
and the termination (abort or commit) are decided on the
primary server. Fig. 9 shows the pseudocode.

3.5 Lazy Replication

Lazy replication has been proposed as an alternative to
eager update everywhere techniques, such as distributed
locking [1]. When used in an update everywhere setting,
lazy replication can violate the ACID properties: Conflicting
transactions might be accepted and committed. In this case,

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 553

Fig. 2. Active replication scheme.

Fig. 3. Active replication—pseudocode for delegate server sd (left) and
any server si (right).

Fig. 4. Certification-based replication scheme.

a reconciliation procedure is needed. Here, we ignore the
issue of conflicting transactions. Lazy replication is con-
sidered only for comparison purposes: Lazy replication
without conflict resolution represents the minimal amount
of synchronization and communication needed and is
optimal from this point of view.

Fig. 8b illustrates the technique: When a transaction
reaches a server (s1, s2, or s3), it is first processed on this
server. Once this is done, the updates are broadcast to the
other servers. Fig. 10 shows the pseudocode.

4 SIMULATOR

All experiments were performed using a discrete event
simulator. The simulator is written in Cþþ and relies on the
C-sim discrete event simulation engine [32].

The overall simulator can be roughly divided into two
conceptual parts: the clients and the servers. The clients
represent the source of transactions: They generate transac-
tions according to certain parameters, send them to servers,
and collect end-to-end performance data. The servers
implement the whole replicated database logic, including
the local database, the group communication system, and
the replication strategies. The simulation concentrates on
low-level aspects. High-level issues, like transaction parsing
and optimizing, are not considered.

4.1 Server Structure

The architecture of the servers follows the ideas presented
in Section 2: Each replica hosts both a local database
manager and a group communication stack. A replication

technique runs on top of these two services. Servers are
therefore structured in the following way:

1. the low-level server module,
2. the communication module,
3. the database module, and
4. the database replication module.

4.1.1 Low-Level Server Module

The low-level server module represents the hardware of one
server. There is one instance of this module for each server in
the system. Each server machine is simulated using two basic
resources: the CPU and the disks. Those resources are used
by other high-level modules of the simulator. The CPU
resource models the processing units. The disk’s resources
are used by the database module. Basic input/output
operations use both the CPU and the disk resources.

These low-level resources (CPUs and disks) are simu-
lated as C-sim resources. High-level operations, like the
execution of a network protocol or of a transaction
operation, are implemented and executed by the simulator.

4.1.2 Communication Module

The Communication Module models all network interac-
tions. There is one instance of this module for each server. At
a low level, both point-to-point and multicast messages are
modeled. Group communication primitives described in
Section 2 are implemented on top of those low-level
messaging facilities. The use of high-level primitives like
total order broadcast will therefore result in a simulated
execution of a total order broadcast protocol using low-level
messages. The algorithms are simulated in failure-free runs
—the most common case in normal operating conditions.

The Communication Module relies on two kinds of
simulated resources: the CPU and the network. The CPU is
the resource exported by the Server Module. The network is
a resource shared by the Communication Modules of all
servers: It represents the network between the servers.

The sending of a message is modeled in three steps: First,
the outgoing message is processed on the sending node, then
the message transits through the network, and, finally, the
message is processed on the receiving node [33]. The

554 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 5. Certification-based replication—pseudocode for delegate server sd (left) and any server si (right).

Fig. 6. Weak voting replication scheme.

resources queues are handled by a FIFO policy. This means

that three resources are involved in simulating the sending of

one message: the CPU resource of the sending machine, then

the network resource, and, finally, the CPU resource on the

receiving machine. This way we can model network and CPU

contention between messages, but also contention between

the communication system and the database system.

4.1.3 Database Module

The database module simulates a single database system.

This modules includes a lock manager and an I/O manager.

The lock manager offers lock queues for each item in the
database. The lock queues can be used to enforce strict
two-phase locking but also support the more complex mode
needed by the techniques described in Section 3. The
I/O manager handles operations to read and write items of
the database. Data items are distributed on the different
disks of the machine (each disk holds a partition of the
data). The I/O manager also simulates the cache system.

4.1.4 Database Replication Module

This module represents the database replication strategy.
There is one instance of this module for each server.

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 555

Fig. 7. Weak voting-based replication—pseudocode for delegate server sd (left) and any server si (middle and right).

Fig. 8. (a) Primary copy replication technique and (b) lazy replication.

Fig. 9. Primary copy replication—pseudocode for the primary server (left) and the backups (right).

Fig. 10. Lazy copy replication—pseudocode for the server processing the transaction (left) and all servers (right).

Depending on the replication strategy, a different
implementation of this module is used. Each replication
scheme is represented by a concrete subclass of the
abstract database replication class. Each of the techniques
described in Section 3 has been implemented. In addition,
a distributed locking replication technique has been
implemented for comparison.

4.2 Client Module

The clients of the replicated database system were also
modeled. Clients are simple sources of transactions. Clients
submit one transaction, wait until the transaction is
processed, sleep for some time, and start the work cycle
again. A client can only submit one transaction at a
time—multiple sources are modeled by multiple clients.
The most important parameter of clients is the time between
submitting transactions. This parameter is the time between
the start of two transactions. If a client starts a transaction at
time t1, once the transaction is finished, the client waits until
time t1 þ d before issuing the next transaction. The variable
d is a random variable with an exponential distribution so
that the mean of d matches the requested interval between
transactions. By adding some randomness, we create
“bursty” load situations.

Typically, a server has many clients attached—each
server has the same number of clients attached. Clients do
not consume any network bandwidth: We consider that the
network interface that interconnects the servers is separate
from the network interface used to communicate between
clients and servers.3 Clients gather all the performance data
and compute statistics. The clients also control simulation
runs and experiment settings, typically stopping the
simulation when the results obtained fit into a certain
confidence interval.

5 SETTINGS

We performed an extensive set of simulations to compare
the different replication techniques. All techniques shared
the same infrastructure layer and the same operational
parameters. The main performance metric is the mean
response time observed by clients. Simulation ran until this
value was at least within a 95 percent confidence interval
with a half width of 5 percent of the mean response time;
often, a better confidence interval was obtained. To avoid
skewed measures due to initial startup factors [34], the

response times associated with the first 500 transactions
were discarded.

Simulations were run with the operational parameters in
Table 1, with one or two parameters being the variables of
the experiment. There are two load settings. The first
consists of 18 clients connected to nine servers with two
clients per server. We call this the medium load setting. The
other setting consists in 36 clients connected to nine servers,
with four clients per server. We call this the high load setting.
In the case of primary copy replication, the medium load
consists of 18 clients connected to the primary with eight
back-ups; the high load consists of 36 clients connected to
the primary.

The database settings were based on numbers in the
literature [35], [36], [13], [14]. The data set contains
10,000 items. Servers are composed of two CPUs and two
data disk units. Each CPU has access to any disk, but only
one CPU can access a disk at a time. Data items are
distributed on the different data disks. The transaction
length is uniformly distributed between 10 and 20 opera-
tions. Each transaction is either an update transaction
(50 percent) or a query transaction (50 percent). Queries
contain only read operations, while updates contain both
read (50 percent) and write (50 percent) operations. Read
and write operations access each one item of the database
(uniform distribution). A write operation might overwrite a
read data, with uniform probability 1=database size.

Operating a read or a write operation uses the disk
between 4 and 12 ms (uniform distribution). Read opera-
tions have a 20 percent chance of hitting the cache and,
therefore, cause no disk usage. Each input/output opera-
tion (read and write) has a CPU overhead of 0.4 ms.

Network settings are based on observed values on a
cluster of PC machines. Each machine is equipped with a
733 MHz processor and a 100 Mbit/s full duplex network
interface. The machines are connected using an Ethernet
hub. Network performance was estimated using the Neko
framework [37] by sending short messages of approxi-
mately 256 bytes. Sending a point-to-point message con-
sumes 0.07 ms of CPU at the sender, 0.07 ms of the network
resource, and 0.07 ms of CPU at the receiver. We assume a
low-level multicast facility (like IP-multicast) with which
we can send a multicast in a single operation. The cost is
0.07 ms on the network and 0.07 ms of CPU at both the
sender and the receiver. We also did experiments using
settings that roughly represent a 10 Mbit/s network with
slower network adapters. In this case, the cost of sending
and receiving a message is 0.5 ms, and the cost of message
transmission is 0.5 ms. We call the first setting (100 Mbit/s)

556 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

TABLE 1
Simulator Parameters

3. Clients’ requests do not consume the CPU resource when being
delivered; this is considered part of the transaction parsing and optimizing
and is not considered here.

the fast network setting and the second the slow network
setting (10 Mbit/s).

6 EXPERIMENTS

We performed several experiments to compare the different
database replication strategies. This section presents the
different experiments and their results. Each experiment
explores a different aspect of a replicated database.

6.1 General Performance Comparison

6.1.1 Description of the Experiment

The first experiment aims at comparing the performance of
the different replication techniques under moderate and
high load, with a medium number of servers (9).

We compared the performance of the different replica-
tion techniques by varying the transaction load. This was
done by changing the time interval that clients wait before
issuing a new transaction (this time is measured between
two transaction starts). The time between transactions was
between 900 ms and 1,800 ms in 50 ms increments. The
experiment was done once with two clients per server and
once with four clients per server. With two clients, the load
varied between 10 and 20 transactions per second; with four
clients, the load varied between 20 and 40 transactions per
second. This experiment was done once with the slow
network settings (10 Mbit/s) and once with the fast network
settings (100 Mbit/s). This gave four basic settings which
are summarized in Table 2. The other operational para-
meters for the experiment are described in Section 5.

6.1.2 Results

Medium Load, Slow Network. Fig. 11a illustrates the
result of the experiment with two clients per server and
the slow network. The experiment shows the performance
of the different replication schemes under the same
operating conditions. The X axis represents the load of
the system expressed in transactions per second. The
Y axis represents the average response time of committed
transactions. Each replication technique is represented by
one performance curve.

The observed conflict rate in the local database managers
changed depending on the replication technique: In a
medium load situation, it was below 5 percent, at high-
load it would reach 20 percent.4 The abort rate for all
techniques was below 5 percent, and is not shown.

The lazy replication scheme does not enforce consis-
tency. It is presented to give a reference in the form of the
best performance that can be achieved in this setting.
Because this technique does little extra processing and does

no synchronization at all, its performance is very good and
is not affected by changes in the load. Basically, the
performance of lazy replication with n servers is equivalent
to n nonreplicated servers getting 1=n of the load.

In the left part of the X-axis, most techniques have very
similar performance: Certification, weak voting, active, and
primary copy have basically the same response time. Lazy
replication does outperform those techniques by a rather
small margin. The main advantage of lazy replication is
very good load balancing, but as the load is limited, this
results in a small difference. This explains why there is no
noticeable difference between techniques that do load
balancing (certification-based replication), and others that
do not (primary copy and active replication).

Distributed locking has a response time that is 60 percent
higher. This is caused by contention on the network, as
distributed locking sends one broadcast per operation. This
leads to a situation where the network becomes the
bottleneck—in the simulator, the usage rate of the network
resource quickly reached 100 percent.

As the number of transactions per second increases, we
can see that the response time of all techniques increases, yet
the relative performance of the different techniques changes.
The response time of distributed locking increases and shows
that there is an asymptotic limit to throughput around
13 transactions per second. This is caused by high network
contention. A similar phenomenon is observable with active
replication, which has a maximum throughput of around
16.5 transactions per second. The reason, this time, is not the
network (at the highest load, the network usage rate was
around 6 percent), but the cost of getting the locks in total
order. With active replication, transactions need to get their
locks in the order defined by the total order broadcast
primitive. So, if transaction t1 is delivered before transaction
t2, transaction t1 must obtain all its locks before t2 can ask for
its locks. If t1 is blocked due to a lock already held, then t2 is
also blocked. Moreover, active replication does no load
balancing: All transactions are executing on all replicas.
Those two factors (serialization of locking phase and absence
of load balancing) are the bottleneck of active replication:
High load causes lock contention, and lock contention slows
down the locking phase. Primary copy replication also has a
load problem, as most of the work is done on the same server,
so performance tends to degrade as the load increases.

The performance of the weak voting technique and the
certification-based technique remains very close to lazy
replication. It is interesting to note that the response time of
the weak voting replication is around 15 ms higher than the
response time of the certification-based technique. This is
explained by the differences between both techniques. In the
weak voting techniques, before a transaction can commit, all
replicas must wait for the delegate to decide of the outcome
of the transaction. This does not happen in the certification
based technique, where all replicas decide deterministically
on the outcome of the transaction due to the use of total
order broadcast. Still, the difference between certification
and weak voting techniques cannot be explained only by the
cost of a broadcast which “costs” around 1.5 ms; the 15 ms
difference is mostly explained by the cost of coordination:
All servers need to wait for the delegate to finish processing

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 557

TABLE 2
General Simulator Settings

4. The observed conflict rate was calculated by marking transactions that
had to wait on a lock held by another transaction during their execution.

t in order to be able to terminate t locally. In other words, the

time needed to broadcast the data is negligible, but the time

lost waiting is not.
Medium Load, Fast Network. Fig. 11b shows the results

of the same experiment but with a fast network (100 Mbit/s).
While most techniques behave in a very similar fashion, one
technique has a very different performance curve: the
distributed locking technique. This makes sense: As the
network was the bottleneck of this technique in the previous
experiment, a faster network leads to better performance.
While performance of distributed locking is much better with
a fast network, the response time is still higher than the
response time of group communication-based techniques
(� 50 ms). This difference can only be partly explained by
network usage (it takes around 0.2 ms to send a message):
With an average of 15 operations per transaction and two
messages per operations (request lock and confirm), this
gives a network cost of around 6 ms. This means that the
major part of the performance penalty is related to the way
transactions are processed. This processing overhead is
probably also partially responsible for the overhead of the
distributed locking technique with the slow network (pre-
vious experiment), but the majority of the overhead with the
slow network was due to network contention.

Another interesting thing to note when comparing

Figs. 11a and 11b is that the difference between the

certification-based technique and the weak voting techni-

que stays roughly the same. This shows that the difference

between those two techniques is not related to the use of
the network.

Network Cost and Distributed Locking. To understand
the relationship between the performance of the network
and the response time of the distributed locking technique,
we measured the response time of the technique while
changing the performance of the network. The result of this
experiment is illustrated in Fig. 12. In this experiment, we
changed the “cost” of sending a message on the network
and plotted the response time of the distributed locking
technique with an interval between transactions of 1,500 ms,
resulting in a load of 12 transactions per second. The X axis
represents the cost of sending one message, i.e., a value x
means that the CPU needs x milliseconds to send (and to
receive) a message and the network needs x milliseconds to
transmit the message. The value X ¼ 0:07 ms corresponds
to the settings of the fast network and X ¼ 0:5 ms
corresponds to the slow network. The Y axis represents
the response time in milliseconds. The graph shows that the
response time of the distributed locking technique increases
with the cost of networking operations. We also see that this
curve is not linear: When the network becomes the
bottleneck, the response time increases much more (this
can be seen when X ¼ 0:35 ms). For this value, the network
facility is used at 67 percent and, on average, processes had
to wait more than 2 ms to access the network resource.

High Load, Fast and Slow Network. Fig. 13a shows the
result of the experiment with four clients and the slow
network. Only the curves of the weak voting, certification,

558 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 11. Overall performance medium-load (a) slow network and (b) fast network.

and lazy techniques were plotted, the others being unable to

sustain more than 20 transactions per second. Fig. 13b

shows the results of the experiment with four clients and

the fast network.
Figs. 13a and 13b are very similar, except for the fact that

the distributed locking technique is not present in the slow

network case (in this setting distributed locking cannot

sustain such high loads). As the main difference between

both experiments is the behavior of the distributed locking

technique, we will concentrate the discussion on the
experiment with the fast network so as to include distributed
locking. Except for distributed locking, the influence of
network performance on overall performance is weak.

With both the fast and the slow networks, we see that
performance degrades steadily when the load is around
30 transactions per second. At first glance, the behavior of
the certification technique is much better that distributed
locking and weak voting: the response time stays signifi-
cantly lower even when the system starts to become
overloaded. In fact, in the fast network setting, when the
load reaches 32 transactions per second, the response time
decreases. When the load is above 34 transactions per
second, the response time of the certification technique is
within the confidence interval of lazy replication.

The difference lies in the abort rate of the different
techniques. While in moderate load situations, the abort
rate of the different techniques was marginal, in high-load
situations, it became significant. Fig. 14 shows the abort rate
of certification, weak voting, and distributed locking
techniques in high-load situations (fast network)—the
parameters are the same as in Fig. 13b. We see that, while
the response time of certification-based replication is low,
its abort rate is significantly higher. The overload of the
system yields a high conflict rate in the certification phase;

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 559

Fig. 12. Influence of network performance on the distributed locking
technique.

Fig. 13. Overall performance high-load (a) slow network and (b) fast network.

therefore, a lot of update transactions abort. In fact, most of
the aborts are update transactions. We can also see that
distributed locking has a sharp increase of aborts once the
load reaches 28 transactions per second: At this point,
deadlocks start to become significant. It is interesting to
note that while the response time of weak voting replication
increases, the abort rate stays stable, below 2 percent.

6.1.3 Discussion

The performance measurements show that replication
techniques can be split into four categories:

1. network bound replication techniques (distributed
locking),

2. limited load techniques (active and primary copy),
3. efficient group communication-based techniques

(weak voting and certification) and
4. the lazy technique.

While distributed locking is affected by network perfor-
mance, most other techniques are not: Their performance is
similar with both the slow and the fast network. This is due
to the fact that they rely on a single broadcast operation,
either a simple broadcast (primary copy and lazy) or a total
order broadcast (group communication-based techniques).

The performance of group communication-based techni-
ques depends mostly on their architecture: Techniques that
were specifically designed for database replication (certifi-
cation and weak voting) outperform the basic technique
(active replication) significantly. The culprits for the bad
performance of active replication are the serial locking
phase and the absence of load balancing.

Even in a fast network configuration, distributed locking
is outperformed by efficient group communication-based
techniques. The reason for this is that the execution of
transactions with distributed locking is tightly coupled
between the replicas. These synchronization phases cause a
serious slow-down. Synchronization is also the cause of the
performance difference between weak voting and certifica-
tion-based replication. The weak voting technique has one
synchronization phase (weak voting phase) that “costs”
around 50 ms when compared to the certification technique.

The behavior of certification-based replication in high-
load situations could be alleviated with flow control

techniques. Flow control would help to avoid situations
where the conflict rate causes too many aborts, leading to
poor performance.

6.2 Scalability Comparison

6.2.1 Description of the Experiment

One aspect of replication techniques that is worth reanalyz-
ing is scalability. A good replication technique must
increase its performance when the number of replicas
increases. In this experiment, we measured how the system
reacts to a changing number of servers. The interval
between transactions was fixed at 1,800 ms and the number
of clients at 36, thus resulting in a load of 20 transactions per
second. We then changed the number of servers and
observed the performance of the system.

Note that the scalability experiment does not make much
sense for the primary copy technique since the work is done
by one single server. With active replication, all servers
handle all transactions, so changing the number of replicas
will not change 1) the number of transactions that each
server handles, and 2) the number of total order broadcast
issued. This means that changing the number of servers
with active replication has a negligible impact on the
performance (this was confirmed experimentally). There-
fore, we concentrate below on the scalability of lazy
replication, certification, weak voting, and distributed
locking. We did the experiment with the fast network
setting and two different types of transaction loads. The
first is called “mixed load” and contains 50 percent of
queries. The second is called “mostly queries” and contains
80 percent of queries.

6.2.2 Results

Mixed Load. Fig. 15a shows the results of the experiment
with a query load of 50 percent. Each set of bars represents
the performance with a given number of servers, starting
with two servers for the leftmost bar. Each technique is
represented with a different bar and the height of each bar
(Y axis) represents the response time in milliseconds.

The general performance is similar to the experiment
presented in Section 6.1: Lazy replication outperforms all
other techniques. Group communication-based techniques
outperform distributed locking. In general, we see that the
response time decreases as the number of replica increases.
This shows that, as the number of servers grows, some part
of the load (queries) can be distributed on more replicas,
thus giving better performance. The most interesting part
appears in the extreme case, when the number of replicas is
maximal (36 servers): The response time of distributed
locking increases significantly. This is not due to network
usage (which stays below 5 percent) nor to distributed
deadlocks (the abort rate was below 1 percent), but to the
cost of coordination inherent to this technique.

While aborts had no significant impact on distributed
locking, this was not the case for the certification technique.
Fig. 16a shows the abort rates for both the certification
technique and the weak voting technique. The X axis
represents the number of servers, the left Y axis represents
the abort rate in percent. We see that, while the abort rate of
the weak voting technique is stable below 2 percent, the

560 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 14. Abort rate with high-load, fast network.

abort rate of the certification technique increases with the

number of servers. When the number of servers is maximal,

the abort rate reaches 20 percent!
A first possible explanation of this behavior is related to

the way conflicts are handled. If two transactions originate

from the same server (they have the same delegate server),

the conflict will be handled by the local locking mechanism.

The local locking system will serialize the execution of the

conflicting transactions: If no deadlock occurs, there will be

no abort. If the two transactions originate from different

servers, the conflict will only be detected at certification

time and will result in the abort of one transaction. So,

increasing the number of replicas increases the chances of

abort. If two transactions ta and tb conflict, the chances that

the conflict results in an abort is proportional to the

probability that ta and tb are on different servers, which is

1� ð1=nÞ, where n is the number of servers.
Still, the observed abort rate cannot be explained by this

phenomenon (the abort rate would be the same for the

weak voting technique and the certification technique). As

shown in Fig. 16a, the observed conflict rate is roughly

proportional to the number of servers (the black curve

represents the function fðxÞ ¼ x on the right linear Y axis,

with 36 servers corresponding to the abort rate with

36 servers). There is a clear correlation between the number

of servers and the abort rate with the certification technique,

but no correlation with the weak voting technique.

The phenomenon is related to the way the certification
algorithm was implemented. At the beginning of the
certification phase, when the read and write sets of a
transaction are delivered, the transaction is put in a conflict
list. This list is used to check for potential conflicts. When a
transaction has been committed on some replica, it becomes
stable on this replica. The information that a transaction is
stable is piggybacked on subsequent total order broadcast
messages. Once a transaction is known to be stable on all
replicas, it is removed from the conflict list. So, a transaction
is removed from the conflict list once it has committed on
all replicas, and all those replicas have issued a total order
broadcast.

This means that, even if transactions are executed
sequentially (so there should be no conflict), conflicts
appear because transactions may stay too long in the
conflict list. Fig. 17 illustrates this problem in the case of
two servers s1 and s2. Initially, the write set of t0 is
processed on s1 and s2, and t0 is committed, i.e., t0 is
stable on s1 and on s2. Once committed, transaction t0 is
put in the conflict list of s1 and s2. Then, s1 broadcasts
(total order broadcast) the read set and write set of t1
(message m1) and s2 broadcasts the read set and write set
of t2 (message m2). Messages m1 and m2 piggyback the
stability of t0. Let us assume that m1 is delivered before
m2. When m1 is delivered, all replicas know that t0 is
stable on s1, but the status of t0 on s2 is unknown, so t0
stays in the conflict list. All replicas then start to process

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 561

Fig. 15. Scalability with (a) a query rate of 50 percent and (b) a query rate of 80 percent.

Fig. 16. Abort rates as a function of (a) the number of servers and (b) the load of the system.

the write set of t1 (message m1). As t0 is still in the

conflict list, t0 can cause the abort of t1. When m2 is

delivered, the system knows that t0 is now stable on s2.

As t0 is stable on all replicas (s1 and s2), it can be

removed from the conflict list. Therefore, t0 can cause the

abort of t1, but not t2.
Now, if we have n servers instead of two, and

transactions t1 to tn instead of just t1 and t2, transaction

t0 will be removed from the conflict list once messages

m1 . . .mn have been delivered. This means that t0 can

potentially conflict with transactions t1 . . . tn�1, i.e., the

number of potential conflicts is proportional to the

number of servers n, regardless of the load of the system.
To verify this hypothesis, we measured the abort rate of

the certification technique with varying loads (between 1

and 30 transactions per second) and a large number of

servers (36). Fig. 16b shows the results of this experiment.

The X axis represents the load of the system and the Y axis

the abort rate. We see that, while the load varies by a factor

of 30, the abort rate stays the same, slightly below 20 percent.
”Mostly Queries” Load. Fig. 15b shows the experiment

with a query load of 80 percent. The overall graph is similar

to the one in Fig. 15a, with better response time—this is

expected as there are more queries. We also see that, while

the increase in response time is not as significant as with

50 percent of queries, the performance of distributed

locking still starts to degrade when the number of servers

is high (36).

6.2.3 Discussion

In general, group communication-based replication techni-

ques scale well, assuming a moderate load and a large

proportion of queries. The response time does not increase

with the number of servers, but diminishes, as one would

expect. We showed that the certification technique has a

problem that leads to many aborts when the number of

servers is high. The weak voting technique has no such

problems. Note that the abort problem of the certification

technique can be addressed using a version-based database.

In this case, the certification test would then rely on the

version number of items instead of a conflict list. While this

approach solves the problem, its drawback is that it

imposes some requirements on the database system (access

to version numbers).
The interesting aspect of group communication-based

replication is that issues like scalability are resolved outside

the replication scheme: If the total order broadcast primitive

scales well, then the replication technique will scale well.

6.3 Query Proportion Comparison

6.3.1 Description of the Experiment

The proportion of queries in transactions can have an
important effect on the performance in the context of a
replicated database. For example, if the read-write policy of
a replication technique is ROWA, queries only need to be
executed on one replica. In some cases, queries can be
executed without requiring any communication. It is
interesting to compare the performance of the replication
techniques under different query rates.

In the experiment, we fixed the number of transactions
per second, changed the proportion of queries, and
measured the response time. When the query proportion
is 100 percent, there are no update transactions; if the query
proportion is 0 percent, all transactions are updates. The
query proportion was increased from 0 percent to 100 per-
cent in 10 percent increments. We measured the impact of
the query load in two settings:

1. Load = 10 transactions per second. In this setting,
the system is configured with 36 clients and
four servers connected by the fast network. The
interval between transactions is fixed at 3,600 ms.
This yielded a load of 10 transactions per second.
When the query rate is 50 percent, this setting
corresponds to X ¼ 10 in Fig. 11b.

2. Load = 20 transactions per second. In this setting,
the system also consists of 36 clients and four
servers connected by the fast network. But this time,
the interval between transactions is 1,800 ms,
leading to a load of 20 transactions per second.
When the query rate is 50 percent, this setting
corresponds to X ¼ 20 in Fig. 11b.

6.3.2 Results

Low Load. Fig. 18a shows the results of the experiment at
10 transactions per second. When the query rate is
100 percent, the load consists of only read operations and
transactions can be distributed on all servers. In this
situation, certification and weak voting replication have
the same performance than lazy replication: The load is
perfectly balanced between all servers and no communica-
tion occurs. Distributed locking suffers from a slight
overhead because of the protocol complexity, but has
roughly the same performance.

The two remaining techniques, active replication and
primary copy, have worse performances because they do no
load balancing. In the primary copy case, all the work is
done on one server, the primary. In active replication, the
situation is slightly different: all the work is done on all
replicas, i.e., all replicas do the work of the primary. In both
cases, there is no load-balancing. As both techniques handle
the load in the same way, one would expect that they have
the same performance. In fact, primary copy should
outperform active replication by the cost of a total order
broadcast. Yet the results show that active replication
outperforms primary copy replication by approximately
30 percent. The reason for this lies in the way active
replication works. In active replication, the delegate server
merely acts as a proxy for all servers: When a transaction is
delivered, it is sent to all servers (including itself) using a
total order broadcast. Each server processes the transactions

562 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 17. Conflict list scenario.

and sends the results back to the delegate, the delegate
forwards the first response to the client. So, in practice, this
means that the perceived response time of the client is the
response time of the fastest server: The observed response
time is the minimum response time of all replicas.

Why are there differences between the response times of
servers? The response time of a transaction on one replica
depends on multiple factors: actual load of the system,
number of items in cache, and time needed for a seek. These
factors are, to some extent, random.5 So, as the number of

replicas increases, the observed response time will improve,
as we are more likely to get a fast first response. Here, we
benefit from the fact that all replicas do all the work. This
improvement is similar to the read operation improvement
in RAID level 1 systems [38].

As the proportion of queries diminishes, the perfor-
mance of all techniques degrades. This performance
degradation is more noticeable for distributed locking: As
the number of writes increases, the overhead of this
technique becomes more obvious. It is interesting to note
that the performance of the certification-based technique
cannot be distinguished from the performance of lazy
replication if the query proportion is larger than 40 percent.
This shows that, for high query rates and low load,
certification-based replication is close to optimum.

Moderate Load. Fig. 18b shows the results for the same
experiment with a higher load (20 transactions per second).
The first thing we see is that some techniques have very bad
performances: active replication (whose curve is outside the
graph) and primary copy replication (upper right corner).
Most other techniques have nonlinear response curves: If
the query proportion is too low, performance drops
suddenly.

If we compare this graph with the one in Fig. 18a, it is
interesting to see that the relative performance between
active replication and primary copy replication is inverted:
While both techniques perform poorly, primary copy has
better performance. In high-load situations, the advantages
of selecting the fastest response is offset by the fact that
much more processing is needed. Additionally, the serial
locking phase of active replication becomes a bottleneck in
high-load situations (see Section 6.1).

Changing load and query rate. To understand how the
linear curves in Fig. 18a transform into those of Fig. 18b, we
plotted three dimensional graphs for the following techni-
ques: certification (Fig. 19a), weak voting (Fig. 19b),
distributed locking (Fig. 19c), and primary copy (Fig. 19d).

We did not plot the remaining two techniques, as their
performances in moderate load setting are very bad. For
each technique, the X axis represents the query proportion,
the Y axis (depth) represents the load of the system in
transactions per second, and the Z axis (height) represents
the resulting response time. Each technique is represented
by a separate surface. On each surface, we marked the curve
corresponding to Z ¼ 200 ms and to Z ¼ 300 ms.

First, we see that all four surfaces are continuous: This
shows that all four techniques are stable in the parameter
space considered. The most noticeable aspect of those four
figures is that distributed locking, certification, and weak
voting replication have the same general shape: Perfor-
mance is good if the load is low or the query proportion
high. Response time reaches a “peak” in high-load, low
query proportion situations. Primary copy (Fig. 19d) on the
other hand, has a very different general shape. While the
technique is also sensitive to some extent to the query
proportion, the load has a far greater influence on
performance. As the load increases, the response time forms
a “wall,” even if the load is composed only of queries. The
reason for this is that primary copy does no load-balancing.

Let us consider the parameter values where the response
time reaches 200 ms and 300 ms, respectively. We can see

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 563

Fig. 18. Performance with changing query rate at (a) 10 transactions per
second, (b) 20 transactions per second.

5. Caching algorithms that are usually used are not random, but
deterministic. Classic deterministic caching algorithms would not benefit
active replication because all the replicas would cache the same items. In the
simulation, caching was simulated as a statistical process. This benefited
active replication. Special algorithms could be tailored to active replication
and give even better results, for instance by having each replica keep in
cache only a subset of the data.

the performance difference between the distributed locking
technique on one hand (Fig. 19c), and the total order-based
replication techniques (weak voting and certification,
Figs. 19b and 19a) on the other hand. Total order-based
replication techniques outperform distributed locking sys-
tematically. In general, the difference is roughly equivalent
to a difference of 10 percent of the query proportion, e.g.,
distributed locking behaves with a 50 percent query
proportion like total order-based replication with a 40 per-
cent query proportion. This is consistent with the perfor-
mance difference observed in overall load performance
(Section 6.1).

6.3.3 Discussion

The experiments show that the load balancing features of
the different replication techniques have an important
impact on performance, especially when the load contains
a large proportion of queries. We see that total order
broadcast-based replication techniques offer good load-
balancing. As those techniques are built on optimistic
hypotheses (execute first, check for conflicts after), they
work best when the proportion of queries is high. In good
conditions (moderate load and high query proportion),
those techniques have a performance close to the perfor-
mance of lazy replication.

7 CONTRIBUTIONS AND RELATED WORK

While there have been other performance evaluations of

database replication techniques based on group commu-

nication (see below), the paper makes the following original

contributions:

. It compares the performance of weak voting and
certification-based replication—those two techni-
ques have never been compared.

. It compares the performance of those techniques to
1) distributed locking and 2) lazy replication. This
gives us a lower and upper bound for performance.

. While group communication-based database repli-

cation has always been presented as a better

alternative to lazy replication, the performance of

group communication-based replication has never

been compared to the optimal solution (from the

performance point of view): lazy (update-every-

where) replication. The paper shows that, when the
load is reasonable and consists mostly of queries

(typically the settings suited for lazy replication),

techniques like certification or weak voting have

performance that is very close to lazy replication.

564 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

Fig. 19. Performance with changing query proportion and changing loads. (a) Certification based, (b) weak voting, (c) distributed locking, and

(d) primary copy.

. The paper uses a more refined simulation model:
Group communication primitives are not simulated,
but executed inside the simulator. Previous simula-
tions modeled complex group communication pro-
tocol like total order broadcast as a single atomic
operation in the simulator.

The results presented confirm the results obtained by
previous experimentations [10], [30], [13], [31], [11], namely,
that database replication based on total order broadcast
offers good performance. We now compare our results with
these previous experiments.

Kemme et al. In [10], [14], [16], Kemme et al. present the
weak voting technique (called SER-D) with some variants
that do not ensure one-copy serializability. Performance
evaluation is done using both a simulator and an
implementation based on Postgres [16]. The performance
of weak voting is compared to distributed locking. The
results are consistent with the one presented here. The
following behaviors have been observed in both studies:

1. Weak voting significantly outperforms distributed
locking.

2. Weak voting is much less affected by slow network
performance than distributed-locking.

3. Weak voting scales well, i.e., the throughput of a
replicated server can be much higher than that of a
single nonreplicated server.

4. Weak voting offers very good performance when the
workload is composed mainly of queries.

It is interesting to note that most variants proposed in
[14] offer increased performance by relaxing serializability
and relying instead on cursor stability. In this context, it is
worth noting that certification replication outperforms
weak voting replication in most cases, while still enforcing
serializability (at the same time, abort rates are an open
issue for certification-based replication).

Pedone et al. In [30], [11] Pedone et al. present the
certification-based replication technique (called database
state machine). An analytical performance evaluation of the
technique is also presented. The results are consistent with
those presented here. We obtain very similar numbers for
the abort rate as a function of the load (Section 6.1) and as a
function of the number of servers (Section 6.2). The
scalability we observed corresponds to the scalability curve
when k ¼ 1, i.e., with an unlimited network. This confirms
that communication is not the bottleneck in a LAN setting.

Holliday et al. In [13], Holliday et al. present the
performance of four techniques (called A1, A2, A3, and
A4) based on group communication and initially described
in [4]. The results are not compared to any classical
technique. Technique A4 (similar communication pattern
as certification) outperforms technique A3 (similar commu-
nication pattern as weak-voting) by a small amount (less
than 10 percent): Our results confirm this. Scalability
experiments for A3 and A4 are also confirmed: When the
load includes many queries, increasing the number of
replicas decreases the response time. We also echo the
conclusion that replication techniques that are specially
tailored for group communication (A3 and A4) offer better
performance than straightforward approaches (A2, in our
case active replication).

The fact that our simulation results are based on a finer
network model than the one used in previous simulations,
while coming to similar conclusions, validates in a sense the
simpler simulation model used in previous experiments. As
the performance of group communication-based techniques
is generally independent of the type of network (10 or
100 Mb/s ethernet), it remains relevant for faster network
(gigabit ethernet).

8 CONCLUSION

In this paper, we measured the performance of different
replication techniques. We focused on techniques based on
total order broadcast and compared their performance to
each other and to classical replication techniques like
primary copy, distributed locking, and lazy update-every-
where replication.

Performance evaluations show that replication techni-
ques based on total order broadcast significantly outper-
form traditional database replication protocols like
distributed locking. In good conditions, performance is
very close to lazy replication. The performance difference is
large if the network is slow and subject to contention. This is
due to the fact that distributed locking uses a lot of
messages. Replication techniques based on total order
broadcast use less networking resources, typically by
restricting interactions to a single broadcast. These techni-
ques are, therefore, very efficient with a slow network.
When the network is fast and contention is rare, group
communication-based replication still outperforms distrib-
uted locking, albeit by a smaller amount. Note that the
situation will not change significantly when moving from a
100Mb/s to a 1Gb/s network since distributed locking
could not saturate a 100Mb/s network.

The stability of performance measured with different
settings, and the lack of significant difference between the
experiment with the slow and the fast network, together
with the resource usage given by the simulator, confirm a
general observation that in a LAN situation, network
contention is not a real problem and will become less and
less important with the advent of faster networks like
gigabit ethernet.

Resources like CPU and disks are much more likely
candidates for being bottlenecks in a LAN. This does not
mean that communication is not an issue in database
replication: Multiple copies still induce several problems
like synchronization costs and high abort rates. Techniques
that rely more on the network are systematically slower,
albeit by a small factor. Those issues are not related to the
performance of the network, but to the design of the
replication technique. The performance difference between
certification-based replication and weak voting replication
is not due to the cost of the additional reliable broadcast of
weak voting, but to the cost of the additional synchroniza-
tion between the replicas.

REFERENCES

[1] J.N. Gray, P. Helland, P. O’Neil, and D. Shasha, “The Dangers of
Replication and a Solution,” Proc. 1996 Int’l Conf. Management of
Data, pp. 173-182, 1996.

WIESMANN AND SCHIPER: COMPARISON OF DATABASE REPLICATION TECHNIQUES BASED ON TOTAL ORDER BROADCAST 565

[2] A. Schiper and M. Raynal, “From Group Communication to
Transactions in Distributed Systems,” Comm. ACM, vol. 39, no. 4,
pp. 84-87, 1996.

[3] G. Alonso, “Partial Database Replication and Group Communica-
tion Primitives,” Proc. Second European Research Seminar on
Advances in Distributed Systems (ERSADS ’97), pp. 171-176, 1997.

[4] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi, “Exploiting
Atomic Broadcast in Replicated Databases,” Proc. EuroPar Conf.
(EuroPar ’97), 1997.

[5] J.M. Chang, “Simplifying Distributed Database Systems Design by
Using a Broadcast Network,” Proc. Ann. SIGMOD ’84 Meeting,
B. Yormark, ed., vol. 14, pp. 223-233, 1984.

[6] Ö. Babaoglu and S. Toueg, “Understanding Nonblocking Atomic
Commitement,” Technical Report UBLCS-93-2, Laboratory for
Computer Science, Univ. of Bologna, Italy, 1993.

[7] I. Keidar and D. Dolev, “Increasing the Resilience of Distributed
and Replicated Database Systems,” J. Computer and System Sciences
(JCSS), vol. 57, no. 3, pp. 309-224, 1998.

[8] R. Jiménez-Paris, M. Patiño-Martı́nez, G. Alonso, and S. Arévalo,
“A Low Latency Nonblocking Commit Server,” Proc. 15th Int’l
Conf. Distributed Computing (DISC 2001), pp. 93-107, 2001.

[9] F. Pedone, R. Guerraoui, and A. Schiper, “Exploiting Atomic
Broadcast in Replicated Databases,” Proc. EuroPar Conf.
(EuroPar ’98), 1998.

[10] B. Kemme and G. Alonso, “A Suite of Database Replication
Protocols Based On Group Communication Primitives,” Proc. 18th
Int’l Conf. Distributed Computing Systems (ICDCS ’98), 1998.

[11] F. Pedone, R. Guerraoui, and A. Schiper, “The Database State
Machine Approach,” Distributed and Parallel Databases, vol. 14,
no. 1, pp. 71-98, July 2003.

[12] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Processing
Transactions over Optimistic Atomic Broadcast Protocols,” Proc.
Int’l Conf. Distributed Computing Systems, 1999.

[13] J. Holliday, D. Agrawal, and A.E. Abbadi, “The Performance of
Database Replication With Group Multicast,” Proc. Int’l Symp.
Fault Tolerant Computing (FTCS 29), pp. 158-165, 1999.

[14] B. Kemme, “Database Replication for Clusters of Workstations,”
PhD dissertation, Swiss Federal Inst. of Technology Zürich,
Switzerland, 2000.

[15] F. Pedone and S. Frølund, “PRonto: A Fast Failover Protocol for
Off-the-Shelf Commercial Databases,” Technical Report HPL-
2000-96, Software Technology Laboratory, Hewlett-Packard La-
boratories, Palo Alto, Calif., 2000.

[16] B. Kemme and G. Alonso, “Don’t Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication,”
Proc. 26th Int’l Conf. Very Large Databases (VLDB), 2000.

[17] S. Frølund and F. Pedone, “Continental Pronto,” Proc. 20th Symp.
Reliable Distributed Systems, pp. 46-55, 2001.

[18] J. Holliday, D.A.R. Steinke, and A.E. Abbadi, “Epidemic Algo-
rithms in Replicated Databases,” IEEE Trans. Knowledge and Data
Eng., vol. 15, no. 5, pp. 1218-1238, Sept./Oct., 2003.

[19] J. Holliday, D. Agrawal, and A.E. Abbadi, “Using Multicast
Communication to Reduce Deadlocks in Replicated Databases,”
Proc. 19th Symp. Reliable Distributed Systems, pp. 196-205, 2000.

[20] Y. Amir and C. Tutu, “From Total Order to Database Replication,”
Proc. 22nd Int’l Conf. Distributed Computing Systems (ICDCS), 2002.

[21] R. Vandewall, “Database Replication Prototype,” master’s thesis,
Rijksuniversiteit Groningen and �EEcole Polytechnique Fédérale de
Lausanne, Netherlands and Switzerland, 2000.

[22] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[23] V. Hadzilacos and S. Toueg, “A Modular Approach to Fault-
Tolerant Broadcasts and Related Problems,” Technical Report
TR94-1425, Cornell Univ., Computer Science Dept., 1994.

[24] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Database Replication Techniques: A Three Parameter Classifica-
tion,” Proc. 19th Symp. Reliable Distributed Systems (SRDS ’00),
pp. 206-215, 2000.

[25] J. Holliday, D. Agrawal, and A.E. Abbadi, “The Performance of
Replicated Databases Using Atomic Broadcast Group Commu-
nication,” Technical Report TRCS99-11, Computer Science Dept.,
Univ. of California, Santa Barbara, 1999.

[26] F.B. Schneider, “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299-319, 1990.

[27] F. Pittelli and H. Garcia-Molina, “Reliable Scheduling in a TMR
Database System,” ACM Trans. Computer Systems, vol. 7, no. 1,
pp. 25-60, 1989.

[28] I. Keidar, “A Highly Available Paradigm For Consistent Object
Replication,” master’s thesis, The Hebrew Univ. of Jerusalem,
Israel, 1994.

[29] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,
“Understanding Replication in Databases and Distributed
Systems,” Proc. 20th Int’l Conf. Distributed Computing Systems
(ICDCS ’00), 2000.

[30] F. Pedone, “The Database State Machine and Group Communica-
tion Issues,” PhD dissertation, �EEcole Polytechnique Fédérale de
Lausanne, Switzerland, 1999.

[31] B. Kemme and G. Alonso, “A New Approach to Developing and
Implementing Eager Database Replication Protocols,” ACM Trans.
Database Systems, vol. 25, no. 3, pp. 333-379, 2000.

[32] CSIM18 Simulation Engine (C++ Version), Mesquite Software Inc.,
Austin, Texas 78759, 1994.

[33] P. Urbán, X. Défago, and A. Schiper, “Contention-Aware Metrics
for Distributed Algorithms: Comparison of Atomic Broadcast
Algorithms,” Proc. Ninth IEEE Int’l Conf. Computer Comm. and
Networks (IC3N 2000), 2000.

[34] R. Ja, The Art of Computer System Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling. John
Wiley and Sons, 1991.

[35] R. Agrawal, M.J. Carey, and M. Livny, “Concurency Control
Performance Modeling: Alternatives and Implications,” ACM
Trans. Database Systems, vol. 12, no. 4, pp. 609-654, 1987.

[36] K. Nørvåg, O. Sandstå, and K. Bratbergsengen, “Concurrency
Control in Distributed Object-Oriented Database Systems,” Proc.
Advances in Databases and Information Systems Conf., pp. 9-17, 1997.

[37] P. Urbán, X. Défago, and A. Schiper, “Neko: A Single Environ-
ment to Simulate and Prototype Distributed Algorithms,” Proc.
15th Int’l Conf. Information Networking (ICOIN-15), 2001.

[38] S. Chen and D. Towsley, “A Performance Evaluation of RAID
Architectures,” Technical Report UM-CS-1992-067, Dept. of
Computer Science, Univ. of Masschusetts, Amherst, 1992.

Matthias Wiesmann received a degree in
computer science from the University of Geneva
in 1997. He received the PhD degree in
computer science at EPFL (Federal Institute of
Technology in Lausanne, Switzerland) in 2002.
He has been a part-time lecturer at the Technical
University of Fribourg, the Technical University
of Vaud, and EPFL. His research interests are in
the area of fault-tolerance in distributed systems,
replicated persistent objects, group communica-

tion, and distributed system management. He is currently a research
fellow at the European Organization for Nuclear Research (CERN) in
Geneva and is working on fault-tolerance on the Atlas data acquisition
system.

André Schiper graduated in physics from the
ETHZ in Zurich in 1973 and received the PhD
degree in computer science from the EPFL
(Federal Institute of Technology in Lausanne,
Switzerland) in 1980. He has been a professor of
computer science at EPFL since 1985, leading
the Distributed Systems Laboratory. During the
academic year 1992-1993, he was on sabbatical
leave at the University of Cornell, Ithaca, New
York. His research interests are in the areas of

dependable distributed systems, middleware support for dependable
distributed systems, replication techniques (including for database
systems), group communication, distributed transactions, and, recently,
MANETs (mobile ad-hoc networks). From 2000 to 2002, he was the
chair of the steering committee of the International Symposium on
Distributed Computing (DISC). He has taken part in several European
projects. He is currently a member of the editorial boards of the ACM
Distributed Computing journal and the IEEE Transactions on Depend-
able and Secure Computing, and a member of the IEEE and the IEEE
Computer Society.

566 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

