MapReduce and Dryad

CS227
Li Jin, Jayme DeDonna
Outline

• Map Reduce
• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
Outline

• Map Reduce

• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
Map/Reduce function

• Map
 – For each pair in a set of key/value pairs, produce a new key/value pair.

• Reduce
 – For each key
 • Look at all the values associated with that key and compute a new value.
Map/Reduce Function Example

```java
map(String key, String value) {
    // key: document name
    // value: document contents
    for each word w in value
        EmitIntermediate(w, "1");
}

reduce(String key, Iterator values) {
    // key: a word
    // values: a list of counts
    for each v in values
        result += ParseInt(v);
    Emit(AsString(result));
}
```
Implementation Sketch

• Map’s input pairs divided into M splits
 – stored in DFS
• Output of Map divided into R pieces
• One master process is in charge: farms out work to W worker processes.
 – each process on a separate computer
Implementation Sketch

- Master partitions splits among some of the workers
 - Each worker passes pairs to map function
 - Results stored in local files
 - Partitioned into R pieces
 - Remaining works perform reduce tasks
 - The R pieces are partitioned among them
 - Place remote procedure calls to map workers to get data
 - Put output to DFS
Implementation Sketch

Input Data → map() → map() → map() → reduce() → reduce() → Output Data

Split [k1, v1] → Sort by k1 → Merge [k1, [v1, v2, v3 ...]]
Implementation Sketch
More Details

• Input files split into M pieces, 16MB-64MB each.

• A number of worker machines are started
 – Master schedules M map tasks and R reduce tasks to workers, one task at a time
 – Typical values:
 • $M = 200,000$
 • $R = 5000$
 • 2000 worker machines.
More Details

- Worker assigned a map task processes the corresponding split, calling the map function repeatedly; output buffered in memory.
- Buffered output written periodically to local files, partitioned into R regions.
 - Locations sent back to master.
More Details

• Reduce tasks
 – Each handles one partition
 – Access data from map workers via RPC
 – Data is sorted by key
 – All values associated with each key are passed to the reduce function
 – Result appended to DFS output file
Coping with Failure

• Master maintains state of each task
 – Idle (not started)
 – In progress
 – Completed

• Master pings workers periodically to determine if they’re up
Coping with Failure

• Worker crashes
 – In-progress tasks have state set back to idle
 • All output is lost
 • Restarted from beginning on another worker
 – Completed map tasks
 • All output is lost
 • Restarted from beginning on another worker
 • Reduce tasks using output are notified of new worker
Coping with Failure

• Worker crashes (continued)
 – Completed reduce tasks
 • Output already on DFS
 • No restart necessary

• Master crashes
 – Could be recovered from checkpoint
 – In practice
 • Master crashes are rare
 • Entire application is restarted
Counterpoint

• MapReduce: A major step backwards
 • A giant step backward in the programming paradigm for large-scale data intensive applications
 • Sub optimal. Use brute force instead of indexing
 • Not novel at all – it represents a specific implementation of well known techniques nearly 25 years ago
 • ...

Countercounterpoint

• Mapreduce is not a database system, so don’t judge it as one
• Mapreduce has excellent scalability; the proof of Google’s use
• Mapreduce is cheap and databases are expensive. (As a countercountercounterpoint to this, a Vertica guy told me they ran 3000 times faster than a hadoop job in one of their client’s cases)
Outline

• Map Reduce
• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
Dryad goals

• General-purpose execution environment for distributed, data-parallel applications
 – Concentrates on throughput not latency
 – Assumes private data center

• Automatic management of scheduling, distribution, fault tolerance, etc.
Outline

• Map Reduce
• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
Where does Dryad fit in the stack?

• Many programs can be represented as a distributed execution graph
• Dryad is middleware abstraction that runs them for you
 – Dryad sees arbitrary graphs
 • Simple, regular scheduler, fault-tolerance, etc.
 • Independent of programming model
 – Above Dryad is graph manipulation
Job = Directed Acyclic Graph
Inputs and Outputs

• “Virtual” graph vertices
• Extensible abstraction
• Partitioned distributed files
 – Input file expands to set of vertices
 • Each partition is one virtual vertex
 – Output vertices write to individual partitions
 • Partitions concatenated when outputs completes
Channel Abstraction

• Sequence of structured (typed) items

• Implementation
 – Temporary disk file
 • Items are serialized in buffers
 – TCP pipe
 • Items are serialized in buffers
 – Shared-memory FIFO
 • Pass pointers to items directly

• Simple, general data model
Why a Directed Acyclic Graph?

• Natural “most general” design point
• Allowing cycles causes trouble
• Mistake to be simpler
 – Supports full relational algebra and more
 • Multiple vertex inputs or outputs of different types
 – Layered design
 • Generic scheduler, no hard-wired special cases
 • Front ends only need to manipulate graphs
Why a general DAG?

• “Uniform” stages aren’t really uniform
Why a general DAG?

• “Uniform” stages aren’t really uniform
Graph complexity composes

- Non-trees common
- E.g. data-dependent re-partitioning
 - Combine this with merge trees etc.

Distribute to equal-sized ranges

Sample to estimate histogram

Randomly partitioned inputs
Why no cycles?

• Scheduling is easy
 – Vertex can run anywhere once all its inputs are ready.
 – Directed-acyclic means there is no deadlock
 – Finite-length channels means vertices finish.
Why no cycles?

• Scheduling is easy
 – Vertex can run anywhere once all its inputs are ready.
 – Directed-acyclic means there is no deadlock
 – Finite-length channels means vertices finish.
Why no cycles?

• Scheduling is easy
 – Vertex can run anywhere once all its inputs are ready.
 – Directed-acyclic means there is no deadlock
 – Finite-length channels means vertices finish.
Why no cycles?

• Scheduling is easy
 – Vertex can run anywhere once all its inputs are ready.
 – Directed-acyclic means there is no deadlock
 – Finite-length channels means vertices finish.
Why no cycles?

• Scheduling is easy
 – Vertex can run anywhere once all its inputs are ready.
 – Directed-acyclic means there is no deadlock
 – Finite-length channels means vertices finish.
Why no cycles?

• Scheduling is easy
 – Vertex can run anywhere once all its inputs are ready.
 – Directed-acyclic means there is no deadlock
 – Finite-length channels means vertices finish.

• Fault tolerance is easy (with deterministic code)
Optimizing Dryad applications

• General-purpose refinement rules
• Processes formed from subgraphs
 – Re-arrange computations, change I/O type
• **Application code not modified**
 – System at liberty to make optimization choices
• High-level front ends hide this from user
 – SQL query planner, etc.
Outline

• Map Reduce
• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
Runtime

- **Services**
 - Name server
 - Daemon

- **Job Manager**
 - Centralized coordinating process
 - User application to construct graph
 - Linked with Dryad libraries for scheduling vertices

- **Vertex executable**
 - Dryad libraries to communicate with JM
 - User application sees channels in/out
 - Arbitrary application code, can use local FS
Scheduler state machine

- Scheduling is independent of semantics
 - Vertex can run anywhere once all its inputs are ready
 - Constraints/hints place it near its inputs
 - Fault tolerance
 - If A fails, run it again
 - If A’s inputs are gone, run upstream vertices again (recursively)
 - If A is slow, run another copy elsewhere and use output from whichever finishes first
Outline

• Map Reduce

• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
SkyServer DB Query

• 3-way join to find gravitational lens effect
• Table U: (objId, color) 11.8GB
• Table N: (objId, neighborId) 41.8GB
• Find neighboring stars with similar colors:
 – Join U+N to find
 \[T = U.\text{color}, N.\text{neighborId} \text{ where } U.\text{objId} = N.\text{objId} \]
 – Join U+T to find
 \[U.\text{objId} \text{ where } U.\text{objId} = T.\text{neighborId} \]
 and \[U.\text{color} \approx T.\text{color} \]
SkyServer DB query

- [distinct]
 [merge outputs]

- select
 u.objid
from u join <temp>
where
 u.objid = <temp>.neighborobjid and
 |u.color - <temp>.color| < d
SkyServer DB query

• M-S-Y : SHM
 – “in-memory” : D-M is TCP and SHM
 – “2-pass” : D-M is Temp Files.

• Other Edges:
 – Temp Files
The graph illustrates the speed-up of different datasets as the number of computers increases. The datasets include:

- **Dryad In-Memory**
- **Dryad Two-pass**
- **SQL Server 2005**

The x-axis represents the number of computers, while the y-axis shows the speed-up. The graph shows a positive correlation between the number of computers and the speed-up for all datasets, indicating improved performance with increased parallel processing capacity.
Outline

• Map Reduce
• Dryad
 – Computational Model
 – Architecture
 – Use cases
 – DryadLINQ
Dryad Software Stack
DryadLINQ

• LINQ: Relational queries integrated in C#
• More general than distributed SQL
 – Inherits flexible C# type system and libraries
 – Data-clustering, EM, ...
LINQ

Collection<
<T> collection;

bool IsLegal(Key);
string Hash(Key);

var results = from c in collection
where IsLegal(c.key)
select new { Hash(c.key), c.value};
DryadLINQ = LINQ + Dryad

```
Collection<T> collection;
bool IsLegal(Key k);
string Hash(Key);

var results = from c in collection
    where IsLegal(c.key)
    select new { Hash(c.key), c.value};
```
Performance

• 10% code. (In comparison to programming directly on the Dryad middleware)

• 30% slower than “expert code”.
Summary

• General-purpose platform for scalable distributed data-processing of all sorts
• Very flexible
 – Optimizations can get more sophisticated
• Designed to be used as middleware
 – Slot different programming models on top
 – LINQ is very powerful
Yahoo! Cloud Serving Benchmark

Xiaowei
Motivation
Benchmark tiers

• **Tier 1 – Performance**
 – A system with better performance will achieve the desired latency and throughput with fewer servers

• **Tier 2 – Scalability**
 – Latency as database, system size increases
 – “Scaleup”

 – Latency as we elastically add servers
 – “Elastic speedup”
Benchmark tiers

• Tier 3 – Availability
 – Measure the Impact of failures on the system

• Tier 4 – Replication
 – Measure the effects of Replication Strategy on the system’s performance
Architecture

- **Workload parameter file**
 - R/W mix
 - Record size
 - Data set
 - ...

- **Command-line parameters**
 - DB to use
 - Target throughput
 - Number of threads
 - ...

- **YCSB client**
 - Workload executor
 - Client threads
 - Stats

- **DB client**

- **Extensible: define new workloads**
- **Extensible: plug in new clients**
DB interface

- read()
- insert()
- update()
- delete()
- scan()
 - Execute range scan, reading specified number of records starting at a given record key
• **Setup**
 – Six server-class machines
 • 8 cores (2 x quadcore) 2.5 GHz CPUs, 8 GB RAM, 6 x 146GB 15K RPM SAS drives in RAID 1+0, Gigabit ethernet, RHEL 4
 – Plus extra machines for clients, routers, controllers, etc.
 – Cassandra 0.5.0 (0.6.0-beta2 for range queries)
 – HBase 0.20.3
 – MySQL 5.1.32 organized into a sharded configuration
 – PNUTS/Sherpa 1.8 with MySQL 5.1.24
 – No replication; force updates to disk (except HBase, which primarily commits to memory)

• **Workloads**
 – 120 million 1 KB records = 20 GB per server

• **Caveat**
 – We tuned each system as well as we knew how, with assistance from the teams of developers
 https://github.com/brianfrankcooper/YCSB/tree/master/workloads
Elasticity

- Run a read-heavy workload
Running a workload

- Set up the database system to test
- Choose the appropriate DB interface layer
- Choose the appropriate workload
- Choose the appropriate runtime parameters (number of client threads, target throughput, etc.)
- Load the data
- Execute the workload
Tips

• Only one Tip!
Conclusions

• YCSB is an opensource benchmark for cloud serving systems

• Experimental results show tradeoffs between systems

• https://github.com/brianfrankcooper/YCSB/wiki/

• http://arunxjacob.blogspot.com/2011/03/setting-up-ycsb-for-low-latency-data.html
Thanks!