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ABSTRACT
Commercial enterprise data warehouses are typically imple-
mented on parallel databases due to the inherent scalability
and performance limitation of a serial architecture. Queries
used in such large data warehouses can contain complex
predicates as well as multiple joins, and the resulting query
execution plans generated by the optimizer may be sub-
optimal due to mis-estimates of row cardinalities. Progres-
sive optimization (POP) is an approach to detect cardinality
estimation errors by monitoring actual cardinalities at run-
time and to recover by triggering re-optimization with the
actual cardinalities measured. However, the original serial
POP solution is based on a serial processing architecture,
and the core ideas cannot be readily applied to a parallel
shared-nothing environment. Extending the serial POP to a
parallel environment is a challenging problem since we need
to determine when and how we can trigger re-optimization
based on cardinalities collected from multiple independent
nodes. In this paper, we present a comprehensive and prac-
tical solution to this problem, including several novel voting
schemes whether to trigger re-optimization, a mechanism to
reuse local intermediate results across nodes as a partitioned
materialized view, several flavors of parallel checkpoint op-
erators, and parallel checkpoint processing methods using
efficient communication protocols. This solution has been
prototyped in a leading commercial parallel DBMS. We have
performed extensive experiments using the TPC-H bench-
mark and a real-world database. Experimental results show
that our solution has negligible runtime overhead and accel-
erates the performance of complex OLAP queries by up to
a factor of 22.
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MANAGEMENT]: Parallel databases
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1. INTRODUCTION
Today’s enterprises often rely on timely and insightful in-

formation for strategic business decisions. Ad hoc on-line
analytical processing (OLAP) queries are formulated to an-
alyze and identify patterns in data sets, thereby transform-
ing data into useful and consumable information. Due to the
large quantities of data needed to be analyzed (or “mined”),
OLAP systems are generally backed by a large data ware-
house implemented on a sophisticated parallel database man-
agement system (DBMS) [3, 21, 22]. Furthermore, OLAP
typically requires complex relational operations on large data
sets and, as such, query performance is a critical factor.

While commercial query optimizers can estimate quite
accurately the intermediate cardinalities for most queries,
factors such as outdated statistics and invalid assumptions
on column independence may lead to significant errors in
the estimation, resulting in a sub-optimal query execution
plan (QEP or plan). This is particularly troublesome for
complex, long-running OLAP queries where a suboptimal
plan can cause performance to degrade dramatically, possi-
bly running for hours instead of seconds. However, despite
such an importance, commercial parallel DBMSs currently
do not have a practical solution to tackle poor OLAP per-
formance caused by suboptimal access plans. Enhancements
in this area can therefore bring tremendous benefits to data
warehousing and business intelligence applications.

Recently, progressive optimization (POP) [15] was pro-
posed as a robust and innovative technique to address this
problem. During query execution, POP attempts to de-
tect sub-optimality due to optimization errors in an access
plan and generates a better plan to continue the execution.
Multiple iterations of re-optimization can be triggered to
progressively refine the plan. Intermediate results from the
partially executed query can also be reused, thus avoiding
the need to start the execution from the very beginning ev-
ery time re-optimization is triggered. This property allows
POP to have a negligible runtime overhead cost and makes
it a feasible solution to remedy poorly performing queries.

While the original POP solution (also called serial POP)
describes methods and a practical system of mid-query re-
optimization, its design is based on a serial processing ar-
chitecture, and the core ideas cannot be readily applied to
a parallel environment. Commercial enterprise data ware-
houses, however, are typically implemented on parallel data-
bases due to the inherent scalability and performance limi-
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tations of a serial architecture. Thus, although serial POP
is a robust technology, it is not a complete solution which
can be readily applied to real-world data warehouses.

Given that POP is conceived to benefit complex OLAP
queries of large data warehouses, adding support for parallel
DBMSs is an important requirement for the technology to
become a fully practical solution in the real world. This
paper describes a comprehensive solution that integrates
POP seamlessly in a parallel database architecture. To the
best of our knowledge, this is the first and foremost solu-
tion to address the said problem by combining mid-query
re-optimization techniques with parallelism exploitation. It
should be noted that although our solution uses the con-
cepts of serial POP as a basis, integrating the technology in
a parallel environment introduces a whole new set of techni-
cal problems and challenges, and the innovative techniques
used to solve them represent significant novelty in itself.

Our solution allows POP to operate seamlessly within a
shared-nothing parallel database, where queries are com-
piled at a central node (called the coordinator node) which
distributes the processing requests to all participating sub-
ordinator nodes and collects their results. At the coordi-
nator site, the optimizer calculates validity ranges of the
parallel plan operators of different candidate access plans
and chooses the one with the lowest estimated cost to drive
the execution. After a plan has been selected, the optimizer
strategically inserts parallel checkpoint operators (PCHECK)
in the plan. PCHECK marks the place where POP can vali-
date the optimality of the chosen plan and possibly intervene
in the execution. The coordinator distributes the augmented
plan to subordinator sites for parallel execution. During
query compilation, the solution also creates a virtual parti-
tioned materialized view (VPMV) at the coordinator site for
each checkpoint operator. At each node, upon completion of
the plan operator below PCHECK, the subordinator sends
status (cardinality, identifiers of the results completed up to
PCHECK) to the coordinator in a non-blocking mode. The
coordinator receives status messages about the completed
results and records them in a VPMV with the validity range
of that result and decides whether to POP based on a novel
voting scheme. In reaching the decision to re-optimize, the
coordinator feeds back VPMVs to the optimizer so that re-
optimization can be triggered with the actual cardinalities
measured and distributed intermediate results reused. Upon
successful completion of the query, the coordinator invokes
distributed garbage collection of intermediate results at all
subordinator sites.

The main contributions of this paper are as follows: 1) we
introduce the PCHECK operator and propose novel place-
ment strategies of the PCHECK operators for parallel query
execution plans; 2) we propose several variations of the
PCHECK operator and their processing methods using ef-
ficient communication protocols; 3) we propose novel vot-
ing schemes to make a global decision of whether or not
re-optimization should be triggered; 4) we propose a mecha-
nism that re-uses a distributed temporary table in a parallel
architecture; 5) we have performed extensive experiments
with the TPC-H benchmark and a real-world database, and
shown that our solution has negligible runtime overhead and
accelerates the performance of complex OLAP queries by up
to a factor of 22.

The rest of the paper is organized as follows. We give some
background information on the shared-nothing database and

serial POP in Section 2. Section 3 gives an overview of our
approach. We present several PCHECK placement strate-
gies in Section 4. Section 5 describes PCHECK processing
mechanisms. We present several novel voting schemes in
Section 6. We explain how to efficiently re-use distributed
temporary results in a parallel architecture in Section 7. We
present experimental results in Section 8. We review related
work in Section 9 and give our conclusion in Section 10.

2. BACKGROUND
In this section, we first briefly describe the shared-nothing

parallel database architecture. We then give an overview of
the serial POP.

2.1 Shared-Nothing Parallel Databases
Commercial parallel relational DBMSs such as NCR Ter-

adata [21], IBM DB2 MPP [3], Tandem NonStop SQL [22]
are based on the shared-nothing architecture. Relational ta-
bles are partitioned across a collection of nodes. Here, some
hash-based partitioning function is used to distribute rows.

Shared-nothing parallel DBMSs typically employ a query
processing model whereby a central site serves as the query
coordinator. When a user issues an SQL statement, the co-
ordinator invokes the optimizer to generate a suitable QEP
and distributes it to subordinator sites for parallel execu-
tion. Each site (also commonly called a node or partition),
receives and runs the QEP against a subset of the table data
and the results are sent back to the coordinator, which col-
lects the rows from all subordinator sites and returns the
final results to the user.

When joining two tables in a parallel database environ-
ment, the table data must be physically located in the same
database partition where the join operation takes place. If
not, the data must be transferred from one partition to the
designated joining partition. This movement of data is ac-
complished by means of a table queue, which is a logical
data pipe for transferring table rows among database parti-
tions. Because relocating data is expensive and can have a
large impact on performance (especially for large databases),
the query optimizer employs several parallel join strategies
to minimize such data movement when resolving relational
table joins.

With the collocated join strategy, each node executes the
join between two table partitions locally. Collocated join is
chosen only if both tables participating in the join are par-
titioned on the join keys. With the directed join strategy,
rows in the outer (or inner) table of the join are directed
via table queues to one or more target database partitions
based on the inner (or outer) table’s partitioning attributes
of the joining columns. Once the rows are relocated to the
relevant database partitions, the join operation between the
two tables occurs in parallel on these partitions. With the
repartitioned join strategy, rows of both the inner and outer
tables of the join are flown to a set of partitions based on
the partitioning attributes of the joining columns. Note that
unlike the pure directed table join strategy, the partitioning
columns of both tables are different from the join columns.
Hence, this strategy essentially performs a repartitioning op-
eration on the joining tables. With the broadcast join strat-
egy, each row in the outer (or inner) table is sent to all
database partitions where the inner (or outer) table exists,
regardless of inner (or outer) table’s partitioning attributes
of the joining columns. Broadcast join is usually chosen by
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the optimizer if other parallel join strategies cannot be used
(e.g., no equality join predicates between the joining tables),
but it can also be used in other situations where it is deter-
mined to be the most cost-effective join method (e.g., joining
a very small table with a large one).

2.2 Serial POP
Serial POP attempts to detect suboptimal performance

and switch to a better plan to continue the execution, with-
out having to re-run the entire query from the beginning.
Multiple rounds of re-optimization can be invoked until the
optimal plan is used. Moreover, through a sophisticated
matching scheme, intermediate results from previous rounds
of execution are made available for reuse, further reducing
the cost of re-optimization.

Figure 1 (from [20]) shows the architecture of the serial
POP solution using a checkpoint runtime operator (CHECK)
to validate the optimality of the executing plan. CHECK
compares the actual cardinality at that point against a com-
puted validity range that consists of a lower bound and an
upper bound for the cardinality. If the actual cardinality is
not within the bounds, query execution is aborted and re-
optimization is triggered. Furthermore, additional knowl-
edge and statistics from the current execution are fed back
to the optimizer for use in generating a better plan. To min-
imize the overhead of re-optimization, intermediate/partial
results (in the form of materialized views) from previous
rounds of executions are reused whenever possible through
a sophisticated matching process. CHECKs are inserted in
a QEP using a placement strategy during the query compi-
lation phase.

OptimizerOptimizer

Best Plan
With CHECK

Best Plan
With CHECK

Plan 
Execution

with 
CHECK

Plan 
Execution

with 
CHECK

StatisticsStatisticsSQL Compilation

“MV” with 
Actual 
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Figure 1: Architecture of the serial POP solution.

3. OVERVIEW OF OUR SOLUTION
Our solution allows POP to operate seamlessly within a

shared-nothing parallel database. At the coordinator site
(where the query is issued), the optimizer exploits the valid-
ity range calculation method used in serial POP for different
candidate parallel access plans and chooses the one with the
lowest estimated cost to drive the execution. After a plan
has been selected, the optimizer strategically inserts dam
operators (TEMP) and PCHECKs in the plan. The TEMP
operator represents a temporary table materialization point
and the checkpoint operator marks the place where POP
can validate the optimality of the chosen plan and possibly
intervene in the execution.

For the parallel POP solution, the PCHECK placement
strategy takes into account the different parallel relational

join strategies used by the optimizer. Details of this novel
placement strategy are discussed in a later section. The co-
ordinator then translates the augmented access plan to a
low-level QEP and distributes it to subordinator sites for
parallel execution. During query compilation, the solution
also creates a VPMV structure at the coordinator site for
each PCHECK. The structure contains the matching query
graph information as well as other runtime information such
as cardinalities relevant for intermediate results matching.
Because the intermediate results, implemented as tempo-
rary tables, are distributed across different processing sites,
our solution uses VPMV structures to “virtualize” these dis-
tributed results for the optimizer to generate view matching
structures needed for reuse. The method for reusing dis-
tributed temporary results is elaborated in Section 7.

A subordinator partition receives and processes the QEP.
When a checkpoint operator is encountered, the subordina-
tor generates a POP vote using a POP-VOTE message and
sends it back to the coordinator. The POP vote consists
of statistics such as table cardinality, as well as information
that is relevant for synchronizing the flow of re-optimization
and reusing intermediate results in a parallel environment.
In addition, the subordinator performs a local validity range
check to determine whether it should wait for the coordina-
tor’s global POP decision or continue its query execution.

When a POP vote arrives, the coordinator will be inter-
rupted from its normal processing to handle the vote. It
extracts the information and uses a defined voting scheme
to make a global decision to whether or not to trigger re-
optimization and to abort the current execution. Further,
for each POP vote, the coordinator finds the correspond-
ing virtual VPMV structure to record its relevant runtime
information.

Assuming re-optimization is triggered, the coordinator dis-
tributes POP-COMMIT messages to halt the query execu-
tion at subordinator sites and waits for their acknowledge-
ments. Once all sites have aborted and sent back their
replies, the coordinator sends a POP-CLOSE message to
each subordinator site to perform the necessary cleanup and
be ready for the next iteration of query execution. After syn-
chronizing with the subordinator sites to perform cleanup,
the coordinator examines what intermediate results can be
reused. At this point, the coordinator re-invokes the opti-
mizer logic and uses the feedback statistics to generate a
better access plan to run the query.

The steps of collecting votes, making a global decision,
and triggering re-optimization can be repeated multiple times
until the optimal QEP is found. At the end of query execu-
tion, the coordinator distributes a POP-COLLECT-GAR-
BAGE message to invoke distributed garbage collection of
cached intermediate results at processing sites.

4. CHECKPOINT OPERATOR PLACEMENT
STRATEGIES FOR PARALLEL QUERY
EXECUTION PLANS

The main metrics concerning the placement of PCHECK
operators are the risk and opportunity of re-optimization. In
contrast to a serial query plan, a parallel plan can have ta-
ble queue operators (TQs) for transferring table data among
database partitions in relational joins as discussed in Sec-
tion 2.1. Since joins in a parallel database highly depend
on the existence and type of TQ, we introduce three kinds
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of PCHECKs to ensure that the re-optimization risks and
opportunities are balanced in a parallel environment where
data relocation may occur due to joins.1 Our goal is to
place these checkpoints as early as possible to avoid expen-
sive data movement when re-optimization is necessary, while
at the same time we need to take into consideration that the
cardinality can be changed after executing a TQ operator,
which in turn can affect the accuracy of the re-optimization
decision.

The parallel checkpoint placement logic described below
is executed at the coordinator site when the optimizer is
invoked during the initial round of query execution as well
as at re-optimization time. The following three types of
parallel checkpoints are proposed.

Broadcast Join PCHECK

The broadcast join PCHECK operator targets the broad-
cast join strategy. When there is a broadcast join operator
(BJ) in a query plan, only one child of the BJ (i.e., the inner
or outer leg of the join) would have a broadcast table queue
(BTQ) operator. Because the cardinality of the temporary
inner or outer table for the join will not change after exe-
cuting a BTQ, our solution strategically places a PCHECK
before the BTQ operator. Furthermore, if no dam opera-
tor (i.e., a table materialization point such as sorting and
temping) already exists before the BTQ operator, we add a
TEMP operator below the PCHECK. Placing a materializa-
tion point before the BTQ operator ensures that the system
can reliably determine if the cardinality of BTQ would vi-
olate the defined validity range; thus, when the cardinality
is out of range, the expensive data broadcast operation can
be avoided and re-optimization can be triggered earlier.

Usually a broadcast join is selected if the cardinality of
the BTQ is small and the cost of broadcasting the rows is
relatively inexpensive. Thus, although we introduce a dam
operator before the BTQ operator if none already exists in
the plan, the cost of materializing the dam is mostly negli-
gible due to the following rationale: if the validity range of
a PCHECK is not violated, it often means the table size is
small (at least within the optimizer’s estimation) and so the
cost of materialization is also small; if the validity range is
violated, the cost of executing the dam will be compensated
by re-optimization avoiding disasters (the intermediate re-
sults can also be reused).

Figure 2(a) below shows a template of the broadcast PCHECK
plan. The broadcast join operator has one child (on the left
side) that broadcasts all rows across all the partitions where
the join is executed. In the diagram, the PCHECK opera-
tor is placed before the BTQ and after the dam operator.
The dam operator can be naturally introduced (e.g., in an
ordered nested loop join) or artificially inserted by our so-
lution for having a materialization point for the PCHECK
operator as discussed.

Directed Join PCHECK

This directed PCHECK operator targets the directed join
strategy. When there is a directed join operator (DJ) in a
query plan, only one child of the DJ would have a directed
table queue (DTQ) operator. Since the cardinality of the
temporary inner or outer table for the join could change on

1Since collocated joins have no TQs, we use the serial
CHECK placement strategy to place PCHECK operators.

BTQ

BJ

PCHECK

DAM

PCHECK

DJ

DAM

DTQ

PCHECK

RJ

DAM

RTQ

(a) Broadcast Join PCHECK. (b) Directed Join PCHECK.

(c) Repartitioned Join PCHECK.

PCHECK

DAM

RTQ

Figure 2: PCHECK placement strategies.

some partitions after executing a DTQ (i.e., the ones re-
ceiving the table queue data), we place a PCHECK after
the DTQ operator. Even though the PCHECK can also
be placed before the DTQ as in the case of the broadcast
join case, we intend to use a lazy checking strategy to avoid
adding too much risk in POP due to inaccurate cardinality
values after the table queue operation. However, if no dam
operator exists before the DTQ, we add a TEMP operator
below the PCHECK to introduce an artificial materializa-
tion point, just as in the case of broadcast PCHECK. We
apply thresholding logic on the cardinality of the DTQ op-
erator such that a dam is not placed if the estimated car-
dinality is beyond a certain threshold. Figure 2(b) shows
a template of the Directed PCHECK plan. Based on the
partitioning property of the joining columns, the DJ opera-
tor has one child (on the left side) which directs the rows of
the outer table to a set of partitions where the inner table
is located. The dam operator is placed on top of the DTQ
operator and the PCHECK operator is in turn placed on
top of the artificial dam.

Repartitioned Join PCHECK

The repartitioned PCHECK operator targets the reparti-
tioned join strategy. When there is a repartitioned join
operator (RJ) in a query plan, both children of the RJ
operator have a repartitioned table queue (RTQ) opera-
tors with which rows of both the inner and outer tables
of the join are transferred to a set of partitions based on
the joining columns’ partitioning properties. The place-
ment strategy used for this type of TQ also inserts the
PCHECK operator after the RTQ operator. As with di-
rected PCHECK, we intend to avoid introducing excess risk
to re-optimization. Also, if there is no natural material-
ization point after the RTQ operator, a TEMP operator is
added below the PCHECK as an artificial dam.

As Figure 2(c) illustrates, both children of the reparti-
tioned join in the query plan have a TQ operator, with which
table data is sent to different database partitions based on
the partitioning information of the joining columns. The
TEMP operator is placed on top of the RTQ operator and
the PCHECK operator is placed on top of the TEMP.

5. PARALLEL CHECKPOINT OPERATOR
PROCESSING

One fundamental property of the parallel database archi-
tecture is the ability to carry out tasks at different process-
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ing sites concurrently and independently to achieve superior
runtime throughput. The natural synchronization points
between the coordinator and its subordinators in a parallel
query occur in the path of receiving and aggregating row
data from subordinate sites. When a subordinate site re-
ceives a QEP from the coordinator, it performs the query
execution orthogonal to other subordinators and therefore a
slower site does not affect the progress of a faster one. Once
a subordinator finishes its work, it can immediately perform
tasks for other queries, making very efficient use of the avail-
able computing resources. Thus, the runtime design of the
parallel POP solution needs to adhere to this characteris-
tic and avoid introducing new synchronization points in its
communication flow. Obviously, adding new synchroniza-
tions points can also negatively impact the response time
of a query execution. This is crucial for the practicality
of POP since the technology is designed to exist as a gen-
eral feature in a database engine, which means it must have
minimal performance impact on queries that do not need
re-optimization (such as queries issued against a database
with perfect statistics and short-running queries in an on-
line transaction processing (OLTP) workload).

Hence, on one hand the throughput capacity and response
time of a parallel DBMS must be preserved, but on the
other hand it is obvious that tasks performed for a query
would become wasted computations whenever it is aborted
due to re-optimiation but the intermediate results cannot
be reused. This means the parallel checkpoint operator pro-
cessing design needs to strike a balance between these two
competing design factors.

We propose three types of parallel checkpoint methods.
1) In the synchronous checkpoint method each subordinator
waits for the coordinator’s decision after sending its vote.
The advantages of this method are that it is easy to im-
plement and that it does not waste unnecessary computing
resources if re-optimization is later needed by always waiting
for the coordinator’s global decision before proceeding. The
main drawback of this method is that slow subordinators
hold up faster ones, resulting in performance degradation for
ordinary queries. 2) The second processing type is the asyn-
chronous checkpoint method, with which each subordinator
continues execution after sending its vote to the coordina-
tor and will be interrupted asynchronously if the coordina-
tor later makes a decision to re-optimize. This method does
not slow down query processing for ordinary queries, but has
the disadvantage of potentially wasting computing resources
on faster subordinators if re-optimization is triggered after
tasks have been performed beyond the checkpoint. 3) The
hybrid checkpoint method combines the synchronous and the
asynchronous checkpoint methods to balance between query
performance and efficient utilization of computing resources.
The heuristic used is that if the local cardinality is within
the validity range, then the method behaves like the asyn-
chronous checkpoint method. Otherwise, it acts just like
the synchronous checkpoint method. That is, it blocks and
waits for the coordinator’s decision since there is a good
chance that POP is globally needed.

With the hybrid checkpoint algorithm, typically no new
synchronization points would be added to the communica-
tion and voting flow of parallel POP for queries that do
not need to re-optimize. Moreover, the slowest subordinate
partition would not become the bottleneck of the execution
preventing faster partitions from making progress (i.e., forc-

ing them to wait for the coordinator’s global decision at a
PCHECK operator).

As POP votes arrive, the coordinator gets interrupted to
collect the votes at the closest interrupt detection point (a
spot in the database engine designated to asynchronously
detect the arrival of messages from subordinate partitions).
It extracts information from the POP votes (based on the
PCHECK operator number) and updates the matching VPMV
structure (see Section 7 for details on these structures). In
addition, based on the voting scheme, the coordinator makes
a global decision whether or not to trigger re-optimization.

If re-optimization is needed, the coordinator distributes a
POP-COMMIT message to all relevant subordinate parti-
tions and interrupts their query execution. The coordina-
tor will synchronize with all the subordinators before actu-
ally going back into the optimizer to invoke re-optimization.
This is to ensure cleanup is done properly and the new query
execution does not inadvertently collide with the current ex-
ecution at the target partitions. Also, in the POP-COMMIT
message the coordinator indicates which local temporary ta-
bles should be kept for possible reuse in future rounds of
execution. The coordinator can drop a temporary table if
it is subsumed by another existing table or if the system is
running low on storage/memory resources.

Depending on the stage of its query execution (e.g., block-
ing on a checkpoint or actively processing the plan opera-
tors), either the subordinator can receive the POP-COMMIT
message at the checkpoint or it must poll for the arrival of
the message at the closest interrupt detection point. In any
case, the subordinator will get interrupted and pick up the
POP-COMMIT message, after which it will abort its execu-
tion, perform all necessary cleanup, and send back a reply
to acknowledge the coordinator’s decision. As part of the
cleanup, the subordinator will cache the completely mate-
rialized temporary tables for potential reuse and drop all
partially materialized results since the optimizer will not
consider them for reuse. Further, for the local temporary
tables that are saved, the subordinator stores the runtime
information about those table objects for future reuse and
the eventual garbage collection.

A subordinator also deletes local temporary tables that
the coordinator did not request to keep. After the coordi-
nator has received all the POP-COMMIT acknowledgment
replies, it will send out a POP-CLOSE message to perform
the final cleanup to close the QEP at subordinate partitions
before a new round of query execution can take place. Af-
ter this is done, the coordinator invokes the re-optimization
logic in the optimizer to generate a new plan.

If re-optimization is not needed, the coordinator still ex-
amines the received POP votes to determine if any subordi-
nate partition is waiting for its decision message. If no par-
tition is waiting, the coordinator simply continues its query
execution. But if one or more waiting partitions are found,
the coordinator will send them a POP-CONTINUE message
to unblock them so that they can continue their execution.

Note that because checkpoint processing can happen con-
currently and asynchronously, it could be the case that a
fast subordinate partition has already flown rows back to the
coordinator by the time votes from other partitions return
to the coordinating partition and the coordinator decide to
trigger re-optimization. Since this has the potential dan-
ger of leading to duplicate rows being returned back to the
user, in our current prototype the coordinator does not trig-
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ger re-optimization in this scenario. Alternatively, the pro-
posed system can buffer up the received rows and not return
them to the user prematurely until all votes for a particular
checkpoint operator have been received, or the system can
save relevant state information to remember what rows have
been returned to the user and not return duplicates.

6. THE VOTING MECHANISM
One key component of the parallel POP solution is the

voting mechanism. In a parallel database system, a query
plan is distributed to multiple sites for execution and each
site will process a subset of the table data. Since data is
not always partitioned uniformly in a parallel environment,
the cardinalities for one CHECK operator are not necessar-
ily similar across different processing sites. As such, taking
the outcome of a local validity range check at one site alone
is not sufficient for generating the re-optimization decision.
Rather, the decision needs to be reached collectively at the
global level based on the input from each processing parti-
tion. A robust voting mechanism is therefore necessitated.

We propose a voting mechanism that consists of a reliable,
asynchronous communication facility and a set of voting
schemes for handling re-optimization decisions. The com-
munication facility is used for exchanging votes and control
messages needed to synchronize the voting process. The vot-
ing schemes are used for analyzing the collected votes and
deriving a global re-optimization decision.

Each execution of the PCHECK operator generates a POP
vote. Since a particular PCHECK operator can be executed
concurrently and asynchronously at more than one location,
the mechanism uses an internal table to keep track of the
number of votes that have been gathered for each PCHECK
operator. Depending on the voting scheme being used, the
mechanism either must wait for all votes for the PCHECK
operator to be collected first, or it can generate a decision
after a number of votes for an operator have been received.

When a POP vote is gathered at the coordinator parti-
tion, the voting mechanism first identifies the sender of the
vote and extracts the information that indicates whether the
sender is waiting for a decision message. Then, the mech-
anism extracts the voting criteria, which is the information
used to translate the vote into a pro or con position for re-
optimization. Our solution currently uses table cardinality
as the voting criteria. The extracted cardinality value is
compared against the validity range defined for the corre-
sponding PCHECK operator. If it is not within the range,
it is counted as a vote for re-optimization; otherwise, it is
counted as a vote against re-optimization. If necessary, the
mechanism can also use other statistics or information as
the voting criteria.

The following five voting schemes are defined:

• Unanimous voting scheme: all participants need to
vote for re-optimization before the coordinator can
trigger the process. This is the most basic and sim-
ple form of voting and serves mainly as a base line
comparison for other voting schemes.

• Majority voting scheme: quorums are created as POP
votes arrive at the coordinator partition. As soon as a
quorum containing at least one-half of the total partic-
ipants voting to re-optimize is formed, the coordinator
will trigger re-optimization. We have found empiri-
cally that this is relatively the most versatile voting

scheme and works well with both uniform and skewed
data partitionings.

• Averaging voting scheme: all votes for a particular
checkpoint operator must arrive before a global POP
decision can be made. Once all votes have been col-
lected, the coordinator will compute the average cardi-
nality and trigger re-optimization if the value violates
the validity range defined for that PCHECK.

• Maximum voting scheme: this is also called the veto
scheme, since the coordinator will trigger a global re-
optimization decision as soon as the actual cardinality
of one arriving vote violates the validity range defined
for the particular checkpoint operator, even if the ma-
jority is within the bounds. This voting scheme is de-
signed to work with databases that have highly skewed
data partitionings and the re-optimization decision is
biased towards the partition with the largest number
of rows for the partitioned table.

• Weighted voting scheme: this is a meta-scheme and
can be applied to the majority, averaging, and maxi-
mum voting schemes. With the weighted voting scheme,
each vote collected by the coordinator is weight-adjusted
based on cardinality estimation errors or cost factors
such as hardware capabilities. This voting scheme tar-
gets parallel databases that have skewed data parti-
tionings and/or are implemented on a heterogeneous
set of machines with dissimilar hardware capabilities.

Related to voting schemes is the concept of voting strate-
gies. The voting mechanism can use either an eager or a
lazy strategy. With eager voting, the decision message is
distributed to subordinate partitions as soon as a global de-
cision has been reached without waiting for the arrival of
the remaining votes. For example, assuming the majority
scheme is used, if three partitions are participating in the
query execution and two subordinate partitions have sent
back their votes to vote against re-optimization, then the
coordinator will immediately send out a POP-CONTINUE
message to resume the execution. In contrast, with lazy
voting, the coordinator waits for all votes to arrive before
distributing the decision message, even if a global decision
has already been reached. We use a combination of the two
strategies to ensure the voting mechanism and the overall
re-optimization process operates optimally. In general, if
the global decision is to continue with the current execu-
tion, the coordinator uses the eager strategy to communi-
cate the decision to all partitions such that any subordinator
blocking on the checkpoint operator can resume the execu-
tion as early as possible. On the other hand, if the global
decision is to abort the current execution and trigger re-
optimization, the coordinator switches to the lazy strategy
and waits for all votes for that PCHECK to come in before
sending out the POP-COMMIT message. This ensures that
all the local temporary tables below that checkpoint have
been fully materialized at all sites and can be reused during
re-optimization.

Note that the voting mechanism is flexible and can easily
incorporate new schemes and strategies based on future re-
search. Furthermore, it has the capability to use a different
scheme dynamically and automatically to adapt to various
types of queries and data partitionings. Combined with the

814



different modes of checkpoint processing, the voting mecha-
nism provides a powerful and adaptive framework for future
work.

7. RE-USING DISTRIBUTED TEMPORARY
TABLE RESULTS

Typically for a parallel DBMS with the shared-nothing
architecture, a physical base table (e.g., one that is created
by the user) uses the same table identifier (TID) on all par-
titions where it is distributedly located. So it is a straight-
forward task for the optimizer to encode and identify a base
table in a query execution plan since the same TID can sim-
ply be used by all partitions to reference the target table
locally.

However, a temporary table (e.g., one that is created and
used only for the duration of the query execution) has in
general a different TID at each partition where the table is
materialized. The optimizer has no knowledge about these
temporary tables and the local TIDs they use, and as such
it cannot assign a globally unique identifier to them. Thus,
it is non-trivial to reuse POP temporary tables in a parallel
environment. In particular, the method described in serial
POP of using TIDs directly to identify and reuse intermedi-
ate results is not applicable in the parallel architecture. The
problem of reusing intermediate results in a parallel environ-
ment is complicated by the fact that a temporary table may
not have been materialized at all relevant partitions by the
time re-optimization is triggered. Therefore, to reduce the
overhead of parallel POP, we propose a method to exploit
a partially materialized temporary table and its statistical
information such that useful knowledge is fed back to the
optimizer for re-optimization even when the table has not
been materialized at all needed locations.

In order to reuse local temporary tables for re-optimization,
the solution treats them as partitioned materialized views so
that they can be fed into the optimizer when generating a
new plan. For this purpose, VPMV structures are created
and maintained at the coordinator site. At query compila-
tion time, three pieces of information are extracted from the
selected query plan and stored in the VPMVs for the pur-
pose of results reuse: 1) matching query graph information;
2) ordering information; 3) partitioning information. The
information is easily extracted from the properties of each
dam operator in the plan. At query execution time, local
temporary tables are cached at each partition when the dam
operator is executed to completion. Then as the PCHECK
operators are executed at each partition, TIDs and the car-
dinalities of the local temporary tables are flown back via
a POP vote to the coordinator partition for storing in the
matching VPMV. Note that the local TID is (and must be)
unique at each partition, although uniqueness across parti-
tions is neither guaranteed nor required due to the virtue of
the VPMV structures.

A two-level identification scheme is devised to achieve
the reuse of distributed temporary tables at re-optimization
time. Specifically, to allow the optimizer to identify and
reuse a particular “virtual” temporary table, each PCHECK
will have a corresponding VPMV structure created and a
unique global identifier (GID) assigned to it at the coordi-
nator partition; and for each unique VPMV, a local iden-
tifier (LID) is stored for each partition currently executing
the query plan. This information, along with other statistics

such as the cardinality, is sent back to the coordinator via
a POP vote when a partition executes the PCHECK oper-
ator. Before the SQL compiler is called for re-optimization
at the coordinator partition, the vote processing logic con-
verts the intermediate results information captured in the
POP votes into a partitioned materialized view by using
the VPMVs created thus far. This ensures that the exact
cardinalities for the distributed local temporary tables are
available in the materialized view and can be used by the
optimizer. Note that since several PCHECK operators can
exist in a query plan, in-memory data structures are main-
tained to allow efficient access to the target VPMV for a
given PCHECK operator number.

Because query execution at different partitions occurs con-
currently in a parallel database, the virtual temporary ta-
ble is not guaranteed to have been materialized completely
in all relevant partitions when the coordinator triggers re-
optimization (i.e., if the coordinator uses an eager voting
strategy as discussed earlier). To avoid adding excessive
risk to POP, we do not attempt to reuse the materialized
rows of a VPMV unless the local temporary tables have been
created at all partitions. However, the statistical informa-
tion for the completed ones can still be exploited despite
the fact that the materialized rows cannot be fully reused.
The runtime logic creates a statistical view for this VPMV
and uses the maximum cardinality (among all cardinalities
sent back to the coordinator for that checkpoint) as the per-
partition cardinality value for the new plan. This knowledge
is then fed back to the optimizer for re-optimization. Note
that we theoretically allow the reuse of rows even for par-
tially materialized virtual temporary tables, but this is not
implemented in the prototype due to the added complexity
and the fact that the solution favors a more conservative
re-optimization and a voting strategy/policy.

If the optimizer decided to reuse a temporary partitioned
materialized view when generating a new plan, the coordi-
nator keys off the GID of the chosen view and piggybacks
each partition’s LID in the QEP when distributing the plan
to target partitions. This reduces the communication over-
head of parallel POP since a separate runtime flow is not
needed for sending out the LIDs. When a subordinate par-
tition receives the QEP, it extracts the LID embedded in
the plan and fetches the cached local temporary table for
the execution.

Figure 3 shows an example of how VPMVs are maintained
and reused in the coordinator partition. In this figure, we
have two VPMV structures created when re-optimization is
triggered. V PMV2 (with GID 2) has been fully populated,
which means all participating partitions have completed the
materialization and as such it can be exploited as a parti-
tioned materialized view in re-optimization. V PMV1 (with
GID 1), however, has only two of the three participating
partitions which have materialized their local temporary ta-
bles; therefore, V PMV1 cannot be considered for the full
reuse. However, to exploit the feedback knowledge captured
in V PMV1, the coordinator converts this information to a
statistical view and uses 250 (the maximum cardinality value
in V PMV1) as the per-partition cardinality for the new plan.
The optimizer will then exploit all this information to gen-
erate a better plan.

Upon successful completion of the query, all locally cached
temporary tables at database partitions can be cleaned up
to free up storage. To initiate the distributed garbage col-
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Coordinator

Node 1 Node 2 Node 3

GID Node LID Card Validity Range

1 11 120 1..100
1 2null null 1..100
1 2 250 1..1003

Virtual partitioned MV runtime info

GID Node LID Card Validity Range

2 12 120 1..200
2 21 110 1..200
2 3 180 1..2003

LID: 1LID: 1 LID: 2LID: 2 LID: 1LID: 1 LID: 2LID: 2 LID: 3LID: 3

Figure 3: Example of intermediate results reuse
based on VPMVs.

lection, the coordinator destroys temporary tables’ corre-
sponding VPMV structures maintained at its partition and
then sends a POP-COLLECT-GARBAGE message to all
partitions involved in the query execution. Each subordi-
nator receives the message and deletes all local temporary
tables requested to be dropped by the coordinator. After
performing the garbage collection the subordinator sends a
reply back to coordinator.

8. PERFORMANCE ANALYSIS
We prototyped our solution in a leading commercial par-

allel DBMS. We studied the performance behavior of our
solution (called Parallel POP) in a number of different sit-
uations and in different environments. The two main de-
grees of freedom for the experiments are data correlation
and data partitioning. Parallel POP provides great oppor-
tunity for workloads with a high degree of data correlation
and unevenly partitioned data or skewed data.

Our first set of tests was done on a workload with high
data correlation. The tables are partitioned evenly across
the nodes. To understand the risk of Parallel POP we will
also show results from experiments done on a second work-
load using completely uncorrelated and uniform data that
is also evenly partitioned across the nodes. While we have
a high risk of regression in such a workload, we also demon-
strate how Parallel POP acts as an insurance policy against
optimization errors made by the query optimizer due to in-
correct statistics. In the third group of tests we modify the
initial workload to introduce data skew across the partitions.
With unevenly partitioned data on all nodes we study the
impact of the four voting schemes and the difference in using
synchronous, asynchronous, or hybrid voting.

8.1 Evenly partitioned data
To test the effect of Parallel POP in a correlated database

we use a real-world workload obtained from the Dutch De-
partment of Motor Vehicles (DDMV). The DDMV database
schema consists of tables to store information about regis-
tered cars including their makes and models, registration
information, owner information, dealer information and de-
mographics including street addresses and zip codes. The
main view used across all the queries joins 7 tables with
cardinalities of 6.3M for car owners and 17.2M for all listed
registrations. The cars are registered in 2437 cities across
the Netherlands. There is a natural correlation in the data,
e.g. between the make of a car and the number of regis-
trations for it. The dataset also includes functional depen-
dencies where for example a make of a car can be derived

from its model. There is skew in the data as well with non-
uniformly distributed values for the age of car owners or the
registration dates of newly released car models. Most queries
filter on a car make together with the car model, e.g. ’make
= ’VOLKSWAGEN’ and model = ’GOLF’ and query per-
formance suffers from the lack of correlation information.
The queries commonly also apply range predicates on the
registration date of a car. With an ever increasing number
of car registrations we expect more results for the past few
years compared to the same time frame during the 1970s.
Given this data skew query performance would benefit from
distribution statistics. While the queries differ in the use of
filter predicates, they all result in the same 7-way join plan
that is required to compute the view. That is a commonly
occurring situation in warehouse environments were reports
are generated for different market segments or different time
slices but using the same global view definition. The queries
we use for the tests are the original queries obtained from
the DDMV and were not artifically modified for the pur-
pose of the test. We partition the dataset into four nodes
using partitioning keys that are commonly used as the join
keys for the tested queries. The partitioning keys are ei-
ther simple primary keys like the person id used to identify
owners, or compound keys consisting of make and model to
identify cars. Tests that use the DDMV workload run on a
six-way S80 PowerPC RS64-III 415MHz system with 16GB
physical memory. The tablespaces, indexspaces, temporary
tablespaces, and logspaces are physically distributed across
RAID arrays set up on SSA storage.

Figures 4 shows the results of the DDMV queries running
with and without Parallel POP. The chart shows a speedup

(=Runtime(query without Parallel POP)
Runtime(query with Parallel POP)

) for each query.
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Figure 4: Relative speedup of DDMV queries with
Parallel POP.

With Parallel POP we achieve a total speedup of fac-
tor 3.1 with the greatest runtime improvements of factor
20. The chart also shows in the top axis the number of
re-optimizations used to achieve this level of runtime im-
provement.

The initial query plans for the DDMV queries are mostly
deep-left nested loop join (NLJN) plans and PCHECK points
are placed in the outer legs of each NLJN. These kinds of
plans provide great opportunities for POP and re-optimization
can be triggered early in every node. In this test we use the
majority voting scheme with asynchronous voting. That
means if an observed cardinality violates the computed va-
lidity range for the PCHECK operator in at least two nodes
we trigger re-optimization. In the final plan the results of

816



all nodes are delivered back to the coordinator. Depending
on the nature of the plan we can also place more PCHECK
points in the local portion of the plan that gets executed
at the coordinator node and potentially trigger more rounds
of re-optimization. We observed in the tests that especially
queries with extremely long runtime are improved through
Parallel POP. With a single exception no query runs longer
than 500 seconds using Parallel POP compared to up to 4000
seconds for the baseline. POP has the ability to protect us
from severe optimization errors due to invalid cardinality es-
timation. In the used DDMV dataset those errors can easily
happen for the estimated cardinality of a join result due to
data correlation and non-uniformly distributed data.

8.1.1 Evenly partitioned and uncorrelated data with
statistics

Testing the other end of the spectrum requires a workload
with no data correlation, uniform distribution, and evenly
partitioned data across nodes. Such a workload would im-
pose a risk of regression on the Parallel POP code because
optimization errors should be limited and due to missing or
incorrect statistics only. For accurate statistics, however,
query optimizer will generate an optimal plan and Parallel
POP is not expected to interfere with that plan decision.
Because of Parallel POP we expect some overhead in the
query runtime due to placement and execution of CHECK
points in the plan.

To measure the overhead of Parallel POP and verify the
risk of regression we choose the industry standard deci-
sion support benchmark TPC-H. The TPC-H database has
eight relations to store information on PARTS, SUPPLI-
ERS, CUSTOMERS, ORDERS, and LINEITEMS. We par-
titioned the database on to four nodes using the primary
keys as partitioning keys. The two smallest relations are
NATION and REGION and we left these tables un-partitioned
on the coordinator node. The hardware used for the TPC-
H tests consists of a two-way P615 Power4 1.45GHz sys-
tem with 4GB physical memory. For physical storage of the
database we again used SSA RAID disks. We note that we
used a different physical environment to show the stability of
progressive optimization in different parallel environments.

The TPC-H queries result in a range of different query
plans including all kinds of join methods and join orders,
common sub-expressions, group by expressions, and table
and index accesses. Figure 5 shows the runtime ratio of
the TPC-H queries tested with Parallel POP and compared
to an execution without POP. The runtime ratio (in %) is
defined as 1

Speedup
× 100.

The runtime overhead measured for the full workload amounts
to 2%. Given a 5% error margin for the tests, there is no
single query with > 10% runtime overhead due to PCHECK
point placement, execution, and voting. The voting scheme
used in the tests was again asynchronous majority voting.

The risk of regression due to re-optimization is minimal for
the tested workload. Only query 9 triggers a single round of
re-optimization. The query is a complex six-way table join
and the re-optimization did not cause regression nor did it
result in any runtime improvements.

8.1.2 Evenly partitioned, uncorrelated data without
statistics

To test the stability of Parallel POP we ran another ex-
periment using the TPC-H dataset as above. This time we
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Figure 5: Runtime ratio for TPC-H workload.

artificially modify the statistics information about the size of
the three biggest relations, LINEITEM, PARTS, and PART-
SUPP without actually removing any rows from the dataset.
Simply by reducing the table cardinalities, index cardinal-
ities, and column cardinalities we can force the query op-
timizer into mistakes due to incorrect statistics. The test
should prove that Parallel POP can recover from these mis-
takes with a minimal risk of regression.

Figure 6 shows the speedup factor of this tests. We ob-
served that 70% of the queries recovered from the initial bad
plan with re-optimization and have runtime improvements of
up to a factor of 22. Re-optimization has the biggest oppor-
tunity when it happens early during query execution. Given
that we reduced the cardinality of the three big tables, opti-
mizer favors query plans which join these three tables early.
The supposedly ’small’ resultsets of these early joins turn
out to be bigger than expected by the query optimizer. This
marks an opportunity for Parallel POP to materialize the re-
sults and join them with the remaining plan using a different
join strategy. For some queries, however, this also imposes
a risk. Suppose we perform a two-way join between PARTS
and PARTSUPP early in the plan and adjust the cardinali-
ties of the join result with a PCHECK point. At this point
Parallel POP can trigger re-optimization based on the cor-
rected join resultset size but still with the incorrect statistics
it has for the LINEITEM table. That results again in a sec-
ond sub-optimal plan that will get executed until the 3-way
join between PARTS, PARTSUPP, and LINEITEM is com-
pleted. Only at this fairly late point during query execution
Parallel POP can trigger a final round of re-optimization
that is based on accurate cardinalities for the result of the
three-way join. That problem is known as the problem of
’partial knowledge’ and can result in regressions as seen for
queries 20, 19, and 8. With 70% if improved queries and
only 10% queries with regression we still achieve a great
speedup of factor 4.7 for the entire workload.

8.2 Skewed data partitioning
All the tests so far have been done using evenly parti-

tioned data across the four data partitions in the shared-
nothing environment. The tests demonstrate that Parallel
POP works efficiently using the asynchronous majority vot-
ing scheme and performs comparably to a non-partitioned
environment. The fact that data was balanced across nodes
has proven to be transparent to the progressive optimizer.

To test the effect of different voting schemes and different
synchronization modes we have to imbalance the data par-
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Figure 6: Speedup of TPC-H queries under artifi-
cially reduced cardinalities.

titioning. We introduce data skew by randomly removing
rows from the DDMV dataset with a different amount of
skew in all partitions. For the car owners tables, e.g. we
remove 0% of rows from the coordinator partition, 50% of
the rows from partition 1, 20% from partition 2, and 10%
from partition 3.

As a result of this data skew query optimization will be
based on an ’average’ size of the tables in the different nodes.
While this average may represent the number of tuples in
one node well enough, it can be insufficient for all the other
nodes. Parallel POP can trigger re-optimization if either 1,
2, 3, or 4 nodes do not agree on the compiled plan based on
the used voting scheme.

Figure 7 shows the response times of a subset of queries
executed for the DDMV workload using the asynchronous
majority voting scheme with skewed partitioning of the data.
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Figure 7: Response times of DDMV queries with
skewed data partitioning.

8.2.1 Effect of different voting schemes
Different voting schemes can result in different re-optimi-

zation strategies with a different number of re-optimization
rounds as seen in Figure 8. Based on four partitions used
in the tests we trigger re-optimization using the maximum
voting scheme as soon as we have at least one node with car-
dinalities out of bound at a PCHECK point. In the average
voting scheme we require the average of four cardinalities
to be out of bound and the majority scheme triggers reop-
timization with at least two nodes out of bound. There is

only one query 38 where the cardinality average violates the
validity range based on the observed cardinality at a single
node. Query 38 triggers re-optimization with the average
scheme but not with the majority scheme. The unanimous
voting causes the least number of re-optimizations because
we require a unanimous decision which is unlikely to get
with skewed data. Only five out of 20 queries qualify for re-
optimization using unanimous voting. There is no instance
where we have exactly three agreeing votes and therefore we
have very similar results for the unanimous and the major-
ity voting schemes throughout the test. That is due to the
limited number of partitions where the difference between a
majority and a unanimous decision is only 2.
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Figure 8: Number of re-optimization rounds for
DDMV queries using different voting schemes.

The runtime ratio for the different voting schemes is shown
in Figure 9. For the first five queries we see the expected
improvements because we have all four nodes requesting re-
optimization. All four voting schemes result in the same de-
cision and re-optimization improves the plan across all the
nodes. For all other queries we have no re-optimization with
the default majority voting scheme. In cases where only one
node requests re-optimization, we trigger with the maximum
voting scheme and easily cause regressions. If three nodes
can agree on a plan and only one requests re-optimization
there is a high likelihood of regression because we overrule
the majority of three nodes. The results could potentially
be different if the requesting node owns 100% of the data
and the three non-requesting nodes are almost empty.

Parallel POP Voting Schemes
DDMV workload with skewed data partitioning
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Figure 9: Runtime ratio of DDMV queries using
different voting schemes.
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8.2.2 Effect of synchronous, asynchronous, and hy-
brid voting

For the given data skew we have established that the ma-
jority voting scheme has the best opportunities and carries
the least risk for Parallel POP. We continue to use that
voting scheme to measure the difference in the use of syn-
chronous, asynchronous, and hybrid voting modes.

Figure 10 shows the runtime ratio for the same set of
queries using the synchronous, asynchronous, and hybrid
voting mode. Asynchronous voting clearly outperforms syn-
chronous voting because query processing can continue while
some nodes did not submit their votes. It seems obvious
that for a homogenous environment where all nodes have
the same physics processing of 50 rows on one node has to
be twice as fast as processing 100 rows on another node. In
an asynchronous mode that allows us to return 50 rows to
the coordinator node even before the other node has finished
execution. On the flip side we miss out on some opportu-
nity for re-optimization because we may have returned 50
rows already before we got to re-optimize based on final
vote from the node processing 100 rows. That is what hap-
pened in query 6 where Parallel POP triggers two rounds
of optimization with the synchronous voting mode but no
re-optimization with the asynchronous and hybrid mode.
Unfortunately there is no clear advantage of triggering re-
optimization in query 6 at this late point in the process. As
there is no clear performance difference between the asyn-
chronous and hybrid voting scheme, we recommend using
the hybrid voting scheme because it consumes less resources.

Parallel POP Voting Schemes
DDMV workload with skewed data partitioning
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Figure 10: Runtime ratio for DDMV queries using
synchronous, asynchronous, or hybrid voting.

8.3 Summary
In a series of tests we have shown how Parallel POP

works with different degrees of data correlation and evenly
vs. unevenly partitioned data. The stability of progres-
sive optimization in parallel environments has been demon-
strated with two different workloads in different physical
environments. The true potential of Parallel POP has been
demonstrated for highly correlated datasets, for uncorre-
lated datasets with incorrect statistics that result in op-
timization errors, and for skewed data partitioning. For
skewed data partitioning there are differences in the use
of the four voting schemes and three voting modes Paral-
lel POP can operate in. We compared the results of all four
voting schemes and the three voting modes and established
that the hybrid majority voting generally has the greatest

opportunity for runtime improvement through re-optimiza-
tion with the least risk of regression.

9. RELATED WORK
The challenges and open issues of query optimization in

parallel database systems were highlighted by Hasan et al
[11]. While considerable progress has been made over the
past decade, parallel query optimization remains an active
field of research fueled by the advent of data-intensive busi-
ness intelligence and data warehousing applications. The
problem of parallel query optimization has two dimensions:
1. execute the parallel plan right; and 2. execute the right
parallel plan. The former involves optimal utilization of the
available parallel machine resources (e.g., CPU, memory,
disk, network, etc.) to execute the query and is related to the
more general problem of resource scheduling and load bal-
ancing in parallel and distributed systems [6]. In contrast,
the latter deals with selecting the optimal plan to drive the
parallel query, which is closely related to relational optimiza-
tion in a serial architecture (e.g., optimal access and join
methods based on accurate cardinality estimates). Our re-
search on parallel POP belongs to this category. To achieve
the best possible query performance in a parallel database
environment both dimensions need to be optimal and there-
fore techniques in one area complement the other. A query
that is perfectly utilizing all the available resources can still
suffer poor performance due to a suboptimal plan and vice
versa.

Two general strategies to parallel query optimization exist
in the literature. One approach is to split the operation into
two phases [11, 12]: serial optimization followed by paral-
lelization. The first phase hides the parallelism metrics from
the optimizer and involves finding the optimal serial QEP
as in a non-parallel environment. The second phase uses
resource utilization and scheduling algorithms to transform
the optimal serial QEP into a parallel, schedulable execu-
tion plan by taking into account all relevant parameters in
a parallel architecture (partitioning information, CPU and
communication costs, etc.). The other approach is to have
an integrated cost-based query optimizer that understands
parallelism and applies that knowledge when costing and
generating candidate plans [4]. While initial studies [11]
suggested that the two-phase strategy produced good par-
allel plans, it was found that in practice the approach could
lead to query compilation overheads since the same kind of
discovery about ordering requirements made by the opti-
mizer would have to be made again during the paralleliza-
tion phase [4]. Our proposed parallel POP architecture falls
under the integrated cost-based optimizer approach.

A large body of work in parallel query optimization has
been devoted to the two-phase approach, with particular
focus on achieving the best possible parallelizing execution
schedule given a serial plan [7, 12, 16]. Extensive research
has also been dedicated to re-optimization strategies that
explore various dynamic load balancing schemes to allow a
parallel or distributed database system to react and adapt
to changes in resource configuration and availability [6]. The
re-optimization methodology on the execution schedule pro-
posed by [7, 1] aimed at handling irregular and unpredictable
data arrival delays from data sources and thus is more ap-
plicable to distributed DBMSs rather than parallel DBMSs
where our focus is. The aforementioned solutions trigger re-
optimization if query execution is detected to have deviated

819



from the optimal resource utilization schedule. In reaction,
the schedule is re-optimized to balance the system and bet-
ter utilize available machine resources. However, the query
plan is not re-optimized, and as such they do not address the
issue of executing with a suboptimal plan due to cardinality
estimation errors.

The work by Ng et al. [17] proposed a method of dy-
namic plan reconfiguration for parallel DBMSs. However, it
primarily focused on operator coordination and state cap-
ture/restoration when a plan is reconfigured due to a sys-
tem change, and did not address the issue of triggering re-
optimization due to a suboptimal plan being chosen. More-
over, their proposed system does not allow the reuse of in-
termediate results after plan reconfiguration, which can lead
to significant runtime overheads.

Several solutions for re-optimizing distributed (or feder-
ated) database queries have been proposed [9, 10]. They
provide calibration functions to help wrappers of remote
data sources refresh statistics periodically. However, they
are compile-time or just-in-time approaches and hence are
still vulnerable to inaccurate cardinality estimates during
execution. An extension of POP to federated queries has
also been proposed [14]. In federated POP, we can directly
use the serial POP solution since a table in a remote site
can be treated the same as a local table using a nickname.
Here, processing at remote resources cannot be targeted for
re-optimization. In contrast, in a shared-nothing parallel
DBMS, a table is partitioned across a set of nodes, and pro-
cessing at all the nodes are targeted for re-optimization, and
thus, a whole new set of technical problems and challenges
are introduced.

General mid-query re-optimization techniques were first
studied in [13]. POP and extensions [5, 15] improve upon
the work by [13] in terms of re-optimization opportunity and
risk metrics. The Redbrick DBMS is a pioneer DBMS that
includes a primitive form of progressive optimization in a
commercial product. It uses a special strategy to perform
star-joins by first computing all the intermediate results of
all dimension table accesses, and then uses their cardinalities
to choose the optimal access and join methods. While this
product uses progressive optimization, it is limited to a very
specific execution strategy and does not address the issues
of arbitrary checkpoint placement, join reordering, and the
reuse of intermediate results.

A drastically different approach to adaptive query opti-
mization is to treat query execution as tuple routing and
optimize each tuple individually. In the Telegraph project,
adaptive mechanisms are devised to continuously reorder
operators in a query plan at runtime[2, 8]. Although their
mechanisms can be applied to federated and parallel database
systems [2, 19, 18, 8], using per-tuple routing as an re-
optimization strategy imposes considerable overhead to query
processing which can lead to performance degradation, es-
pecially if the initial plan is already optimal and does not re-
quire re-optimization. Eddies and STAIRs also cannot reuse
intermediate results [8]. Moreover, an eddy uses greedy rout-
ing policies and does not consider the overall query execution
cost. While this is suitable for Telegraph’s interactive and
continuous processing metrics, it remains to be seen that,
without a traditional optimizer that uses dynamic program-
ming, if this would work for systems with the more common
completion time or total work metrics.

10. CONCLUSION
In this paper, we presented a comprehensive and practi-

cal solution for progressive optimization in a shared-nothing
parallel database to progressively fix sub-optimal plans gen-
erated due to the optimizer’s estimation errors. We pro-
posed novel placement strategies of the PCHECK operators
for parallel query execution plans in Section 4. We presented
several variations (synchronous, asynchronous, and hybrid)
of the PCHECK operator processing methods and detailed
steps using efficient communication protocols in Section 5.
We then proposed novel voting schemes (unanimous, ma-
jority, averaging, maximum, and weighted) in Section 6 to
make a robust global decision to POP. Here, we proposed a
combination of eager and lazy voting strategies to ensure the
voting mechanism and the overall re-optimization process
operate optimally. We proposed a novel method in Section 7
to “virtualize” distributed intermediate results which allows
the optimizer to generate view matching structures needed
for reuse since the intermediate results are distributed at
different processing sites. We have implemented our solu-
tion in a leading commercial DBMS. Experiments using our
prototype have shown that our solution dramatically im-
proves robustness of query execution, accelerating complex
OLAP queries by up to a factor of 22, while incurring only
a negligible overhead and a minimal risk of regression.
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