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Abstract 
There has been much work on compressing database 
indexes, but less on compressing the data itself.  We 
examine the performance gains to be made by 
compression outside the index.  A novel compression 
algorithm is reported, which enables the processing 
of queries without decompressing data needed to 
perform join operations in a database built on a 
triple store.  The results of modelling the 
performance of the database with and without 
compression are given and compared with other 
recent work in this area.  It is found that for some 
applications, gains in performance of over 50% are 
achievable, and in OLTP-like situations, there are 
also gains to be made.  

1 Introduction 

1.1 Background 
The benefit of compressing indexes in a database has 
long been established, but recent work has focussed 
on compressing the data itself.  In one paper, 
Westmann et al [Wes00] recommended lightweight 
compression techniques in the context of a TPC-D 
benchmark database, but queried the benefit of 
compressing data in an OLTP environment.  In other 
research, Chen et al [Chen01] focussed on 
compression-aware query optimization in a TPC-H 
database. 
 
Both of these approaches deal with decision support 
queries in a ‘traditional’ n-ary relational database 
with large numbers of records, which require heavy 
processing in query optimization and execution.  In 
this research, we focus on some more fundamental 
issues which come to light when an alternative 
database architecture is employed, in this case, a 
binary relational database.  Here, information 
concerning relationships is held directly in a triple 
store, with data held in a lexical store (see below).  
This architecture greatly reduces the need for 
expensive join processing, but the trade-off is 
extensive processing of triple store records, and the 
question is then whether compression can benefit this 
processing.   

 
A new compression algorithm has been developed for 
the database.  Using this, records are compressed 
when initially inserted into the triple store, but from 
then on, processing can be carried out efficiently 
without needing to decompress the records again.  
We describe a modelling exercise carried out to 
explore the extent of the performance improvement, 
and suggest that although there are theoretical 
limitations, there is often significant gain to be made, 
even for OLTP type queries. 
 
The triple store is not a new concept, see for example 
[Shar78, Shar88], but continues to draw interest 
[TriStarp] with a new commercial database [Sen01] 
now on the market.  In the present implementation, a 
triple store is the central repository for information 
concerning relationships in both the data and the 
meta-data, and this is coupled with a lexical store 
which holds each separate data value just once.  The 
number of triples in the triple store is related to the 
number of instances of each field in the database, and 
the structure means that there is indexed access to 
every field in the database. 
 
To guide the design process, a tool has been 
developed to model the performance of the emerging 
implementation.  The approach taken was to use the 
facilities provided by a spreadsheet, rather than to 
develop a separate bespoke modelling program.  The 
performance model is constructed around the 
interface at which commands are submitted to the 
database to enter or retrieve entities and their 
attributes.  Applications may be developed within the 
model by assembling sequences of the operations, 
and the model is then used to predict behaviour as 
various parameters are altered.   

1.2 Related Work 
Many efforts in the context of relational databases 
have dealt with compression in the index.  Here, 
successive entries are sequenced, and various 
techniques such as prefix compression and suffix 
compression have been employed, as described in 
standard works such as Gray and Reuter [Gray93] or 
Ramakrishnan [Ram00].   
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With respect to compression of non-index data in a 
database, techniques such as Huffman coding 
[Huff52], Lempel-Ziv [Ziv77] work well for 
compressing certain types of data, such as medical 
images [Kar97] or text [Mof97], but are not 
applicable to compressing string fields in a database 
due to the CPU cost.  There are other algorithms for 
compressing numeric data, and these are well 
described in the papers mentioned earlier, [Wes00] 
and [Chen01].  The reader is therefore referred to 
them for further related work.  

2 Compression in Databases 
 
The most obvious reason to consider compression in 
a database context might seem to be to reduce the 
space required on disk.  However, as disk space 
becomes rapidly less expensive, this is no longer such 
an important concern.  The more important issue is to 
see whether the processing time for queries can be 
reduced by limiting the amount of data that needs to 
be read from disk to satisfy the query.  By 
compressing data, can the number of blocks to be 
read be reduced? 
 
Speed-up can come from reducing the number of disk 
I/Os, (as long as the CPU cost of achieving this is not 
too high) and frequently the only way to do this is by 
reducing the number of accesses required in 
traversing the index.  The height of the index tree is 
given by a logarithmic formula:- 
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where H is the height of the tree, RBlkNum is the 
number of blocks containing data records, and INum 
is the number of index entries/block.  In other words, 
there is an exponential relationship between H and 
both RBlkNum and INum.   
 
One option is therefore to increase INum by 
compressing index entries, which is the route taken in 
many databases today.  The second option, in which 
we are interested, is to decrease RBlkNum, by 
compressing the data itself.  In order to reduce the 
height of the index tree by one, and thus eliminate 
one disk I/O, we could calculate  
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If we assume that INum, the degree of index 
compression, is the same in both cases, this simplifies 
to  
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So if the number of index entries per block were, say, 
100 (a relatively low figure), then to achieve a 
consistent performance improvement by reducing the 
number of disk accesses by one for all database sizes, 
a compression factor of over 100 is needed, a fairly 
aggressive target! 
 
This sort of analysis might lead one to abandon 
interest in data compression immediately, but in fact 
things are not quite so simple, as the following work 
will show.  Nevertheless, the basic facts above are 
worth bearing in mind and will be discussed later. 

3 Towards a Compression 
Algorithm 

 
In the triple store, sorting ensures that the first part of 
the triple will be repeated for successive entries, 
which immediately suggests scope for compression.  
Each entry in the triple store contains three parts: the 
identity of the relationship (RelId), the identity of the 
entity that the relationship runs from (FromId) and 
the identity of the entity that the relationship runs to 
(ToId).  The triples are stored in sorted order in two 
ways:  <RelId, FromID, ToId> and <RelId, ToId, 
FromId>.  Each logical triple is therefore actually 
stored twice, and query processing is optimized to 
use the appropriate sort order depending on the 
search criteria.  As entity sets increase in size, there 
are increasing numbers of triples for each relationship 
type.   
 
The three identities are each currently represented by 
a four-byte integer, which gives a symmetrical 
implementation.  The triple store is accessed by 
means of a B-Tree type of index.  It is worth noting 
that while compression in indexes can be lossy (if 
index entries are over-compressed, the situation can 
be recovered by retrieving additional data blocks), in 
the triple store itself, any algorithm must not lose 
information.   

3.1 The Scope for Compression in the 
Triple Store 

Most queries applied to the database will result in the 
direct retrieval of one or a small number of triples by 
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means of the index.  The only queries where this is 
not the case, and a range of triples is retrieved in 
sequence, are where the database is being searched to 
perform a join on a non-key field (in n-ary terms).  
The DBMS contains its own cache, and the size of 
this will affect the number of blocks that must be read 
from the disk.  Cache size and block size are 
parameters in the performance model.  If the triples 
can be reduced in size, more triples can be held in a 
block.  The size of the index is therefore reduced, and 
this is also modelled. 
 
Two observations are worth making at this point:   
 
1) The number of different RelIds in a given 

database is quite small.  In the database 
described below, there are fewer than one 
hundred different RelIds.  The Id allocation 
algorithm is designed to pack numbers into 
as few low-order bytes as possible, and it is 
likely that there will be ‘spare’ bytes at the 
start of the RelId that are never used. 

 
2) A 16k block can store about 1000 

uncompressed triples at 70% occupancy.  
The triples are sorted, and if the Ids are 
allocated so that 50% of the numbers in a 
given range are actually used, the range of 
FromIds in a block could be as little as 2000 
(Hex 7D0), needing only one and a half 
bytes.  This figure is even less if a smaller 
block size is used. Within one block, 
therefore, it is quite likely that the high order 
bytes will be repeated for many successive 
triples.   

3.2 Possible Approaches 
Two contrasting approaches were considered.  The 
first was typified by an algorithm which made use of 
a ‘compression byte’ prefixed to the triple.  The bits 
in the prefix are set to indicate which bytes in the 
present triple are repeated from the previous triple, 
and are therefore omitted.  Application of the 
algorithm to a sample triple store indicated that the 
store could be compressed to about 60% of its 
original size.   
 
However, there is a major disadvantage to this 
approach, which applies in some degree to 
compression in most databases.  In order to carry out 
any processing, the block will need to be 
decompressed, as the offset of a record depends on 
the size of the previous records in the block.  While 
the reduction in size potentially gives a significant 
reduction in I/O, the intensity of processing in the 
triple store, where relationships are followed from 

one entity to another, led to consideration of another 
algorithm.   
 
The second approach was designed to permit the 
processing of a block in its compressed state.  The 
principle is that once the block has been initially 
compressed, subsequent operations, particularly 
binary searches, can be performed on the block in its 
compressed state, without needing to decompress it 
every time, which will clearly benefit performance 
considerably.  The algorithm used to achieve this was 
termed ‘the block mask algorithm’. 

3.2.1 The Block Mask Algorithm 
At the beginning of each block, a mask is stored, 
indicating which of the twelve bytes in each triple are 
not constant throughout the block, as shown in Table 
1.  The next record in the block contains a full triple, 
a ‘starter record’, with the values of the fixed bytes in 
the appropriate position. The remainder of the block 
stores short fixed length records containing only the 
bytes that vary.  Each block will contain a different 
mask, so that the length of the fixed length records in 
each block might be different.   
 
Mask 0001 0011 0111 
Starter Triple 0010 4000 5000 
Subsequent Triples 345987 ( = 0013 4045 

5987) 
               … 446678 ( = 0014 4046 

5678) 
               … … and so on … 

Table 1 – Example of the Block Mask Algorithm 
When a block is retrieved into the DBMS, it is then 
possible to use the mask and the starter record to 
reconstruct any individual triple without the need to 
decompress the whole block.  As described above, 
the algorithm works in terms of bytes.  A further 
refinement is possible to store only the bits that 
change, rather than whole bytes, which allows further 
compression to be achieved.   

3.2.2 Evaluation of the algorithm 
Application of this algorithm can lead to compression 
down to a third of the original size of the triple, or a 
quarter if bit level compression is being used.  Triples 
are compressed when being placed in the triple store.  
For retrieval, the search string is compressed, the 
required triple is located in the compressed block, 
typically using a binary search, and the selected triple 
is decompressed when located.  The block mask 
algorithm only needs a few lines of code to pick up 
the mask and the starter record, and then apply these 
to the selected triple.   
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There are further detailed decisions that a final 
implementation would require.  For example, it 
would be possible to insist that each block contained 
only triples relating to one RelId.  This would 
enhance compression, and if data sets are large so 
that one RelId spans several blocks, would lead to a 
worthwhile saving.  For a small database, however, 
this could result in an unnecessary proliferation of 
blocks, adversely affecting the performance.  This 
sort of refinement is beyond the current study, 
however. 

4 Modelling the Performance 
Improvement 

4.1 The Database 
For this exercise, a database for a wholesaler buying 
in goods from a number of suppliers, and shipping 
smaller quantities to various customers was used.  In 
conventional n-ary database terms, the database had 8 
tables, with a number of relationships between them.  
The scenario assumed was that a variety of mainly 
OLTP transactions would be carried out, at normal 
volumes.  All queries in the present experiments were 
read-only. 
 
The 8 tables represented customers, suppliers, orders, 
products and so on.  The average number of fields per 
table was taken as 10.  This translates into a triple 
store database with 8 entity sets with 80 attribute sets, 
requiring 80 different entity-attribute relationships.  
The foreign key relationships between the tables 
translate into 10 entity-entity relationships.  Thus 90 
different relationships were required.   
 
In considering the compression ratio achievable, it is 
necessary to consider the range of values for various 
aspects.  The following discussion is in terms of a 
triple store sorted in the primary order, that is, on 
RelId and FromId. 
 
1)  RelId’s: For this database, 90 different ids 

are required, plus the small number required 
to handle meta-data.  The Ids for this could 
therefore be handled within one byte.  For 
any database other than the smallest, 
however, most blocks will contain triples 
relating to only one relationship.  The RelId 
will therefore compress out completely, and 
be held only in the block mask.  
 

2) FromId’s:  Following the discussion in 3.1 
above, two bytes will be needed, which 
gives a range of 64k for the values of the Ids 
in one 16k block.  (If a smaller block size is 

used, the range is reduced.  However, the 
greater compression is not significant unless 
very small blocks are used, and the increase 
in processing then outweighs the benefit.  A 
16k block size was used throughout this 
series of experiments.) 

 
3) ToId’s: If the database is sorted on the first 

two fields, then the values in the ToIds will 
be randomly scattered across the range for 
each set.  For a database up to one million 
triples (which corresponds to about 50,000 
entities per set or 25 Mb of actual data), two 
bytes will suffice to cover the range of ids; 
for a database up to 200 million triples and 
beyond (about 1 million entities/set, 500 
Mb), three bytes will be needed. 

 
The 12 bytes required before compression can 
therefore be reduced to four or five bytes after 
compression for this scenario.  If the compression is 
carried down to the bit level, then the FromId could 
be held in 12 bits, and the smaller ranges for the ToId 
could also be held in 12 bits, so the compressed triple 
could then be just three bytes. 
 
In the direction FromID to ToId, each triple captures 
one instance of a m:1 relationship, so that when the 
triple store is sorted in the primary order, the third 
field will not have any particular sequence, as 
reflected above.  In the inverse sorted triple store, the 
order is RelId, ToId, FromId, which represents the 
relationships in the 1:m order.  Successive triples 
may now have identical fields in both the RelId and 
the ToId, and the FromId will be in sorted order, so 
that triples can be further compressed.  To model this, 
however, would require more detailed examination of 
the distribution of data in the various domains, and 
this was not deemed appropriate to the present level 
of analysis.  
4.2 Establishing the Model 
The size of the cache has a critical impact on 
performance.  As the cache size increases, more 
levels of index and more data records can be held in 
the cache, and the overall performance will improve.  
Cache size was therefore varied to see the effect of 
this as it interacts with compression.   
 
The vast majority of normal queries involve searches 
where the RelId is known and either the FromId or 
the ToId is also known.  In either of these cases, the 
blocks can be accessed directly through the index, if 
both sort orders are held (RFT and RTF).  The main 
interest is therefore in the retrieval time for such 
queries.  Access to the triple store which is primarily 
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sequential with just a few index accesses is required 
only for a query where, in traditional RDB terms, 
there is no foreign key linking two tables, such as 
might be used in some decision support enquiries.  
An example in the Wholesale database would be 
“Find me the suppliers and customers who share a 
postcode”.  In this case, all or part of the triple store 
has to be scanned looking for matches.  Compression 
will obviously speed these searches, and this was also 
considered. 

5 Results 
5.1 Direct Access 
The model was run for the wholesale database.  The 
cache size was varied, and in each case, results were 
recorded for various sizes of database, both with and 
without compression.   Figures 1 and 2 show the 
results for two different cache sizes.  The graphs 
show the average number of disk accesses required 
for the retrieval of a triple.  A database operation will 
often require a number of triples to be retrieved, so 
that variations in the number of disk accesses will be 
evened out, and the average is a useful figure to work 
with.  The complex interaction between index size, 
database size and cache size yields local variations, 
such as that in Figure 2, where the first two points for 
the compressed database both show the database 
almost entirely in the cache, but there is a broad 
similarity in the results.  
 
The effect of increasing the cache by a factor of 4 can 
be seen in the reduction of the number of accesses by 
a half to three quarters of one access depending on 
the size of the database.  Increasing the cache size 
would be expected to improve performance, and the 
model helps quantify the degree of improvement.  
 
The particular interest, however, is in the effect of 
compression.  Each graph shows the effect of this, 
which is to reduce the number of accesses by a 
significant amount ranging from a quarter to three 
quarters of an access.  This leads to an improvement 
by a factor of almost two in smaller databases, 
dropping to 1.25 in large databases.  This result 
corresponds to the OLTP situation, where each query 
looks for a record which may be unrelated to the 
previous one, and stands in contrast to the 
conclusions drawn by Westmann et al, who do not 
expect compression to improve the performance of 
OLTP-style applications. 

5.2 Sequential Access  
For queries which do not involve a significant degree 
of index access, then compression produces a 

straightforward benefit.  Each retrieved block 
contains more triples, in direct proportion to the 
compression ratio, and the model confirms this.  One 
therefore sees an improvement of 2:1 or better, and 
this is very much in line with the results from 
Westmann et al and Chen et al, which both deal with 
decision support situations. 
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Figure 1. Triple retrieval time with 256k cache 
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Figure 2. Triple retrieval time with 1 Mb cache 

6 Conclusions 
 
The operations that would be carried out by joins in a 
conventional database are replaced by operations in 
the triple store, so that any reduction in the number of 
accesses has a direct effect on performance, whether 
for a single query or for a sequence of related 
operations.  The block-mask algorithm permits 
processing to be carried out on compressed data, 
yielding a very efficient join mechanism.  The effect 
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of this has been modelled, and shown to produce 
significant benefit. 
 
In the case of sequential operations which would be 
needed for decision support queries, the results 
obtained demonstrate an improvement by a factor of 
two.  However, it has also been shown that this 
approach would benefit OLTP queries, giving a 
reduction in the number of disk accesses by a factor 
in the range of 1.25 to 2.   
 
At present, the model takes no account of locality of 
reference, so is actually unduly pessimistic.  One of 
the advantages of fully decomposing data in the 
current implementation is that related items will be 
stored in close proximity; because the triples are 
sorted, data is automatically clustered by dictionary 
subject matter.  In other words, the whole of a binary 
relation will be tightly clustered. In practice, 
therefore, it is expected that the results would be 
better than predicted by the model.   
 
Further work should include consideration of the 
additional effect of compression on the indexes.  The 
uniformity of the implementation means that the 
same code is used to handle both the blocks in the 
triple store and in the index to the triple store.  Any 
compression algorithm will therefore benefit both, 
and a further modelling exercise could capture the 
effect of this.   
 
There is also the possibility of extending the degree 
of compression.  The current assumption is that all 
data domains are large, but in practice, some are quite 
small.  In the extreme case of a binary domain (e.g. 
Male, Female), compression down to one bit per 
triple is possible, as follows.  If a block contains one 
relation, and if FromId’s are densely packed, then the 
initial FromId can be held in the block header, as well 
as the RelId.  If the rest of the block is considered as 
an array, each bit in the array could represent the 
monotonically increasing set of FromId’s held in the 
block.  Each bit could then be set to indicate whether 
the ToId took one or other of the two possible values.  
This would give a compression factor of almost 100 
(12 bytes down to one bit).  This could be generalised 
and implemented on a block by block basis.  If in the 
range of one block, the third field only uses two bits, 
even if the potential domain is larger, the block could 
be compressed to this level while retaining the higher 
level advantages of the triple model. This degree of 
compression would have a major impact on the 
performance of all types of queries.  
 
 
 

References 
 
[Chen01] Z Chen, “Query Optimization in 

Compressed Database Systems”, ACM SIGMOD 
Record Vol 30, No 2, pp 271-282, June 2001 

 
[Gray93] J Gray & A Reuter, Transaction Processing: 

Concepts and Techniques, Morgan Kaufmann, 
1993 

 
[Huff52]  D Huffman, “A Method for the 

Construction of Minimum Redundancy Codes”, 
Proc IRE, 40(9), pages 1098-1101, Sept 1952 

 
[Kar97] K Karadimitriou, J M Tyler, “Min-Max 

Compression Methods for Medical Image 
Databases”, SIGMOD Record, Vol 26, No 1, 
March 1997 

 
[Mof97] A Moffatt, J Zobel, “Text Compression for 

Dynamic Document Databases”, IEEE 
Transactions on Knowledge and Data 
Engineering, Vol 9, No 2, March-April 1997 

 
[Ram00]  R Ramakrishnan & J Gehrke, Database 

Management Systems, McGraw Hill, 2000 
 
[Sen01] “Sentences DB”, based on the Associative 

Model of Data, from Lazy Software, 
www.lazysoft.com 

 
[Shar78]  G C H Sharman and N Winterbottom, “The 

Data Dictionary Facilities of NDB”, Proc 4th Int. 
Conf on Very Large Databases (VLDB), pp 186-
197, IEEE 1978 

 
[Shar88]  G C H Sharman and N Winterbottom, “The 

Universal Triple Machine: a Reduced Instruction 
Set Repository Manager”, Proceedings of 
BNCOD 6, pp189-214, 1988 

 
[TriStarp] TriStarp Web Site: 

http://www.dcs.bbk.ac.uk/~tristarp 
 
[Wes00] T Westmann, D Kossmann, S Helmer, G 

Moerkotte, “The Implementation and 
Performance of Compressed Databases”, ACM 
SIGMOD Record Vol 29, No 3, pp 55-67, 
September 2000 

 
[Ziv77] J Ziv, A Lempel, “A Universal Algorithm 

for Sequential Data Compression”, IEEE 
Transactions on Information Theory, 22(1), pages 
337-343, 1977 

SIGMOD Record, Vol. 32, No. 1, March 2003                                                                              11


