

Performing Joins without Decompression in a
Compressed Database System

S.J. O’Connell*, N. Winterbottom
Department of Electronics and Computer Science,

University of Southampton, Southampton, SO17 1BJ, UK
* Corresponding author: soc@ecs.soton.ac.uk

Abstract
There has been much work on compressing database
indexes, but less on compressing the data itself. We
examine the performance gains to be made by
compression outside the index. A novel compression
algorithm is reported, which enables the processing
of queries without decompressing data needed to
perform join operations in a database built on a
triple store. The results of modelling the
performance of the database with and without
compression are given and compared with other
recent work in this area. It is found that for some
applications, gains in performance of over 50% are
achievable, and in OLTP-like situations, there are
also gains to be made.

1 Introduction

1.1 Background
The benefit of compressing indexes in a database has
long been established, but recent work has focussed
on compressing the data itself. In one paper,
Westmann et al [Wes00] recommended lightweight
compression techniques in the context of a TPC-D
benchmark database, but queried the benefit of
compressing data in an OLTP environment. In other
research, Chen et al [Chen01] focussed on
compression-aware query optimization in a TPC-H
database.

Both of these approaches deal with decision support
queries in a ‘traditional’ n-ary relational database
with large numbers of records, which require heavy
processing in query optimization and execution. In
this research, we focus on some more fundamental
issues which come to light when an alternative
database architecture is employed, in this case, a
binary relational database. Here, information
concerning relationships is held directly in a triple
store, with data held in a lexical store (see below).
This architecture greatly reduces the need for
expensive join processing, but the trade-off is
extensive processing of triple store records, and the
question is then whether compression can benefit this
processing.

A new compression algorithm has been developed for
the database. Using this, records are compressed
when initially inserted into the triple store, but from
then on, processing can be carried out efficiently
without needing to decompress the records again.
We describe a modelling exercise carried out to
explore the extent of the performance improvement,
and suggest that although there are theoretical
limitations, there is often significant gain to be made,
even for OLTP type queries.

The triple store is not a new concept, see for example
[Shar78, Shar88], but continues to draw interest
[TriStarp] with a new commercial database [Sen01]
now on the market. In the present implementation, a
triple store is the central repository for information
concerning relationships in both the data and the
meta-data, and this is coupled with a lexical store
which holds each separate data value just once. The
number of triples in the triple store is related to the
number of instances of each field in the database, and
the structure means that there is indexed access to
every field in the database.

To guide the design process, a tool has been
developed to model the performance of the emerging
implementation. The approach taken was to use the
facilities provided by a spreadsheet, rather than to
develop a separate bespoke modelling program. The
performance model is constructed around the
interface at which commands are submitted to the
database to enter or retrieve entities and their
attributes. Applications may be developed within the
model by assembling sequences of the operations,
and the model is then used to predict behaviour as
various parameters are altered.

1.2 Related Work
Many efforts in the context of relational databases
have dealt with compression in the index. Here,
successive entries are sequenced, and various
techniques such as prefix compression and suffix
compression have been employed, as described in
standard works such as Gray and Reuter [Gray93] or
Ramakrishnan [Ram00].

6 SIGMOD Record, Vol. 32, No. 1, March 2003

With respect to compression of non-index data in a
database, techniques such as Huffman coding
[Huff52], Lempel-Ziv [Ziv77] work well for
compressing certain types of data, such as medical
images [Kar97] or text [Mof97], but are not
applicable to compressing string fields in a database
due to the CPU cost. There are other algorithms for
compressing numeric data, and these are well
described in the papers mentioned earlier, [Wes00]
and [Chen01]. The reader is therefore referred to
them for further related work.

2 Compression in Databases

The most obvious reason to consider compression in
a database context might seem to be to reduce the
space required on disk. However, as disk space
becomes rapidly less expensive, this is no longer such
an important concern. The more important issue is to
see whether the processing time for queries can be
reduced by limiting the amount of data that needs to
be read from disk to satisfy the query. By
compressing data, can the number of blocks to be
read be reduced?

Speed-up can come from reducing the number of disk
I/Os, (as long as the CPU cost of achieving this is not
too high) and frequently the only way to do this is by
reducing the number of accesses required in
traversing the index. The height of the index tree is
given by a logarithmic formula:-

)(

)(

INumLn

RBlkNumLn
H =

where H is the height of the tree, RBlkNum is the
number of blocks containing data records, and INum
is the number of index entries/block. In other words,
there is an exponential relationship between H and
both RBlkNum and INum.

One option is therefore to increase INum by
compressing index entries, which is the route taken in
many databases today. The second option, in which
we are interested, is to decrease RBlkNum, by
compressing the data itself. In order to reduce the
height of the index tree by one, and thus eliminate
one disk I/O, we could calculate

1
)(

)(

)(

)(
=

′

′
−

′′

′′
=′−′′

mINuLn

mRBlkNuLn

mINuLn

mRBlkNuLn
HH

If we assume that INum, the degree of index
compression, is the same in both cases, this simplifies
to

)()()(INumLnmRBlkNuLnmRBlkNuLn =′−′′

or INum
mRBlkNu

mRBlkNu
=

′

′′

So if the number of index entries per block were, say,
100 (a relatively low figure), then to achieve a
consistent performance improvement by reducing the
number of disk accesses by one for all database sizes,
a compression factor of over 100 is needed, a fairly
aggressive target!

This sort of analysis might lead one to abandon
interest in data compression immediately, but in fact
things are not quite so simple, as the following work
will show. Nevertheless, the basic facts above are
worth bearing in mind and will be discussed later.

3 Towards a Compression
Algorithm

In the triple store, sorting ensures that the first part of
the triple will be repeated for successive entries,
which immediately suggests scope for compression.
Each entry in the triple store contains three parts: the
identity of the relationship (RelId), the identity of the
entity that the relationship runs from (FromId) and
the identity of the entity that the relationship runs to
(ToId). The triples are stored in sorted order in two
ways: <RelId, FromID, ToId> and <RelId, ToId,
FromId>. Each logical triple is therefore actually
stored twice, and query processing is optimized to
use the appropriate sort order depending on the
search criteria. As entity sets increase in size, there
are increasing numbers of triples for each relationship
type.

The three identities are each currently represented by
a four-byte integer, which gives a symmetrical
implementation. The triple store is accessed by
means of a B-Tree type of index. It is worth noting
that while compression in indexes can be lossy (if
index entries are over-compressed, the situation can
be recovered by retrieving additional data blocks), in
the triple store itself, any algorithm must not lose
information.

3.1 The Scope for Compression in the
Triple Store

Most queries applied to the database will result in the
direct retrieval of one or a small number of triples by

SIGMOD Record, Vol. 32, No. 1, March 2003 7

means of the index. The only queries where this is
not the case, and a range of triples is retrieved in
sequence, are where the database is being searched to
perform a join on a non-key field (in n-ary terms).
The DBMS contains its own cache, and the size of
this will affect the number of blocks that must be read
from the disk. Cache size and block size are
parameters in the performance model. If the triples
can be reduced in size, more triples can be held in a
block. The size of the index is therefore reduced, and
this is also modelled.

Two observations are worth making at this point:

1) The number of different RelIds in a given

database is quite small. In the database
described below, there are fewer than one
hundred different RelIds. The Id allocation
algorithm is designed to pack numbers into
as few low-order bytes as possible, and it is
likely that there will be ‘spare’ bytes at the
start of the RelId that are never used.

2) A 16k block can store about 1000

uncompressed triples at 70% occupancy.
The triples are sorted, and if the Ids are
allocated so that 50% of the numbers in a
given range are actually used, the range of
FromIds in a block could be as little as 2000
(Hex 7D0), needing only one and a half
bytes. This figure is even less if a smaller
block size is used. Within one block,
therefore, it is quite likely that the high order
bytes will be repeated for many successive
triples.

3.2 Possible Approaches
Two contrasting approaches were considered. The
first was typified by an algorithm which made use of
a ‘compression byte’ prefixed to the triple. The bits
in the prefix are set to indicate which bytes in the
present triple are repeated from the previous triple,
and are therefore omitted. Application of the
algorithm to a sample triple store indicated that the
store could be compressed to about 60% of its
original size.

However, there is a major disadvantage to this
approach, which applies in some degree to
compression in most databases. In order to carry out
any processing, the block will need to be
decompressed, as the offset of a record depends on
the size of the previous records in the block. While
the reduction in size potentially gives a significant
reduction in I/O, the intensity of processing in the
triple store, where relationships are followed from

one entity to another, led to consideration of another
algorithm.

The second approach was designed to permit the
processing of a block in its compressed state. The
principle is that once the block has been initially
compressed, subsequent operations, particularly
binary searches, can be performed on the block in its
compressed state, without needing to decompress it
every time, which will clearly benefit performance
considerably. The algorithm used to achieve this was
termed ‘the block mask algorithm’.

3.2.1 The Block Mask Algorithm
At the beginning of each block, a mask is stored,
indicating which of the twelve bytes in each triple are
not constant throughout the block, as shown in Table
1. The next record in the block contains a full triple,
a ‘starter record’, with the values of the fixed bytes in
the appropriate position. The remainder of the block
stores short fixed length records containing only the
bytes that vary. Each block will contain a different
mask, so that the length of the fixed length records in
each block might be different.

Mask 0001 0011 0111
Starter Triple 0010 4000 5000
Subsequent Triples 345987 (= 0013 4045

5987)
 … 446678 (= 0014 4046

5678)
 … … and so on …

Table 1 – Example of the Block Mask Algorithm
When a block is retrieved into the DBMS, it is then
possible to use the mask and the starter record to
reconstruct any individual triple without the need to
decompress the whole block. As described above,
the algorithm works in terms of bytes. A further
refinement is possible to store only the bits that
change, rather than whole bytes, which allows further
compression to be achieved.

3.2.2 Evaluation of the algorithm
Application of this algorithm can lead to compression
down to a third of the original size of the triple, or a
quarter if bit level compression is being used. Triples
are compressed when being placed in the triple store.
For retrieval, the search string is compressed, the
required triple is located in the compressed block,
typically using a binary search, and the selected triple
is decompressed when located. The block mask
algorithm only needs a few lines of code to pick up
the mask and the starter record, and then apply these
to the selected triple.

8 SIGMOD Record, Vol. 32, No. 1, March 2003

There are further detailed decisions that a final
implementation would require. For example, it
would be possible to insist that each block contained
only triples relating to one RelId. This would
enhance compression, and if data sets are large so
that one RelId spans several blocks, would lead to a
worthwhile saving. For a small database, however,
this could result in an unnecessary proliferation of
blocks, adversely affecting the performance. This
sort of refinement is beyond the current study,
however.

4 Modelling the Performance
Improvement

4.1 The Database
For this exercise, a database for a wholesaler buying
in goods from a number of suppliers, and shipping
smaller quantities to various customers was used. In
conventional n-ary database terms, the database had 8
tables, with a number of relationships between them.
The scenario assumed was that a variety of mainly
OLTP transactions would be carried out, at normal
volumes. All queries in the present experiments were
read-only.

The 8 tables represented customers, suppliers, orders,
products and so on. The average number of fields per
table was taken as 10. This translates into a triple
store database with 8 entity sets with 80 attribute sets,
requiring 80 different entity-attribute relationships.
The foreign key relationships between the tables
translate into 10 entity-entity relationships. Thus 90
different relationships were required.

In considering the compression ratio achievable, it is
necessary to consider the range of values for various
aspects. The following discussion is in terms of a
triple store sorted in the primary order, that is, on
RelId and FromId.

1) RelId’s: For this database, 90 different ids

are required, plus the small number required
to handle meta-data. The Ids for this could
therefore be handled within one byte. For
any database other than the smallest,
however, most blocks will contain triples
relating to only one relationship. The RelId
will therefore compress out completely, and
be held only in the block mask.

2) FromId’s: Following the discussion in 3.1
above, two bytes will be needed, which
gives a range of 64k for the values of the Ids
in one 16k block. (If a smaller block size is

used, the range is reduced. However, the
greater compression is not significant unless
very small blocks are used, and the increase
in processing then outweighs the benefit. A
16k block size was used throughout this
series of experiments.)

3) ToId’s: If the database is sorted on the first

two fields, then the values in the ToIds will
be randomly scattered across the range for
each set. For a database up to one million
triples (which corresponds to about 50,000
entities per set or 25 Mb of actual data), two
bytes will suffice to cover the range of ids;
for a database up to 200 million triples and
beyond (about 1 million entities/set, 500
Mb), three bytes will be needed.

The 12 bytes required before compression can
therefore be reduced to four or five bytes after
compression for this scenario. If the compression is
carried down to the bit level, then the FromId could
be held in 12 bits, and the smaller ranges for the ToId
could also be held in 12 bits, so the compressed triple
could then be just three bytes.

In the direction FromID to ToId, each triple captures
one instance of a m:1 relationship, so that when the
triple store is sorted in the primary order, the third
field will not have any particular sequence, as
reflected above. In the inverse sorted triple store, the
order is RelId, ToId, FromId, which represents the
relationships in the 1:m order. Successive triples
may now have identical fields in both the RelId and
the ToId, and the FromId will be in sorted order, so
that triples can be further compressed. To model this,
however, would require more detailed examination of
the distribution of data in the various domains, and
this was not deemed appropriate to the present level
of analysis.
4.2 Establishing the Model
The size of the cache has a critical impact on
performance. As the cache size increases, more
levels of index and more data records can be held in
the cache, and the overall performance will improve.
Cache size was therefore varied to see the effect of
this as it interacts with compression.

The vast majority of normal queries involve searches
where the RelId is known and either the FromId or
the ToId is also known. In either of these cases, the
blocks can be accessed directly through the index, if
both sort orders are held (RFT and RTF). The main
interest is therefore in the retrieval time for such
queries. Access to the triple store which is primarily

SIGMOD Record, Vol. 32, No. 1, March 2003 9

sequential with just a few index accesses is required
only for a query where, in traditional RDB terms,
there is no foreign key linking two tables, such as
might be used in some decision support enquiries.
An example in the Wholesale database would be
“Find me the suppliers and customers who share a
postcode”. In this case, all or part of the triple store
has to be scanned looking for matches. Compression
will obviously speed these searches, and this was also
considered.

5 Results
5.1 Direct Access
The model was run for the wholesale database. The
cache size was varied, and in each case, results were
recorded for various sizes of database, both with and
without compression. Figures 1 and 2 show the
results for two different cache sizes. The graphs
show the average number of disk accesses required
for the retrieval of a triple. A database operation will
often require a number of triples to be retrieved, so
that variations in the number of disk accesses will be
evened out, and the average is a useful figure to work
with. The complex interaction between index size,
database size and cache size yields local variations,
such as that in Figure 2, where the first two points for
the compressed database both show the database
almost entirely in the cache, but there is a broad
similarity in the results.

The effect of increasing the cache by a factor of 4 can
be seen in the reduction of the number of accesses by
a half to three quarters of one access depending on
the size of the database. Increasing the cache size
would be expected to improve performance, and the
model helps quantify the degree of improvement.

The particular interest, however, is in the effect of
compression. Each graph shows the effect of this,
which is to reduce the number of accesses by a
significant amount ranging from a quarter to three
quarters of an access. This leads to an improvement
by a factor of almost two in smaller databases,
dropping to 1.25 in large databases. This result
corresponds to the OLTP situation, where each query
looks for a record which may be unrelated to the
previous one, and stands in contrast to the
conclusions drawn by Westmann et al, who do not
expect compression to improve the performance of
OLTP-style applications.

5.2 Sequential Access
For queries which do not involve a significant degree
of index access, then compression produces a

straightforward benefit. Each retrieved block
contains more triples, in direct proportion to the
compression ratio, and the model confirms this. One
therefore sees an improvement of 2:1 or better, and
this is very much in line with the results from
Westmann et al and Chen et al, which both deal with
decision support situations.

Queries using Direct Access

0.00

0.50

1.00

1.50

2.00

1,000
10,000

100,000
1,000,000

10,000,000

100,000,000

1,000,000,000

Database Size (No of Triples)
Av

er
ag

e
No

 o
f D

is
k

Ac
ce

ss
es

Without Compression
With Compression

Figure 1. Triple retrieval time with 256k cache

Queries using Direct Access

0.00

0.50

1.00

1.50

2.00

1,000
10,000

100,000
1,000,000

10,000,000

100,000,000

1,000,000,000

Database Size (No of Triples)

No
 o

f D
is

k
Ac

ce
ss

es

Without Compression
With Compression

Figure 2. Triple retrieval time with 1 Mb cache

6 Conclusions

The operations that would be carried out by joins in a
conventional database are replaced by operations in
the triple store, so that any reduction in the number of
accesses has a direct effect on performance, whether
for a single query or for a sequence of related
operations. The block-mask algorithm permits
processing to be carried out on compressed data,
yielding a very efficient join mechanism. The effect

10 SIGMOD Record, Vol. 32, No. 1, March 2003

of this has been modelled, and shown to produce
significant benefit.

In the case of sequential operations which would be
needed for decision support queries, the results
obtained demonstrate an improvement by a factor of
two. However, it has also been shown that this
approach would benefit OLTP queries, giving a
reduction in the number of disk accesses by a factor
in the range of 1.25 to 2.

At present, the model takes no account of locality of
reference, so is actually unduly pessimistic. One of
the advantages of fully decomposing data in the
current implementation is that related items will be
stored in close proximity; because the triples are
sorted, data is automatically clustered by dictionary
subject matter. In other words, the whole of a binary
relation will be tightly clustered. In practice,
therefore, it is expected that the results would be
better than predicted by the model.

Further work should include consideration of the
additional effect of compression on the indexes. The
uniformity of the implementation means that the
same code is used to handle both the blocks in the
triple store and in the index to the triple store. Any
compression algorithm will therefore benefit both,
and a further modelling exercise could capture the
effect of this.

There is also the possibility of extending the degree
of compression. The current assumption is that all
data domains are large, but in practice, some are quite
small. In the extreme case of a binary domain (e.g.
Male, Female), compression down to one bit per
triple is possible, as follows. If a block contains one
relation, and if FromId’s are densely packed, then the
initial FromId can be held in the block header, as well
as the RelId. If the rest of the block is considered as
an array, each bit in the array could represent the
monotonically increasing set of FromId’s held in the
block. Each bit could then be set to indicate whether
the ToId took one or other of the two possible values.
This would give a compression factor of almost 100
(12 bytes down to one bit). This could be generalised
and implemented on a block by block basis. If in the
range of one block, the third field only uses two bits,
even if the potential domain is larger, the block could
be compressed to this level while retaining the higher
level advantages of the triple model. This degree of
compression would have a major impact on the
performance of all types of queries.

References

[Chen01] Z Chen, “Query Optimization in

Compressed Database Systems”, ACM SIGMOD
Record Vol 30, No 2, pp 271-282, June 2001

[Gray93] J Gray & A Reuter, Transaction Processing:

Concepts and Techniques, Morgan Kaufmann,
1993

[Huff52] D Huffman, “A Method for the

Construction of Minimum Redundancy Codes”,
Proc IRE, 40(9), pages 1098-1101, Sept 1952

[Kar97] K Karadimitriou, J M Tyler, “Min-Max

Compression Methods for Medical Image
Databases”, SIGMOD Record, Vol 26, No 1,
March 1997

[Mof97] A Moffatt, J Zobel, “Text Compression for

Dynamic Document Databases”, IEEE
Transactions on Knowledge and Data
Engineering, Vol 9, No 2, March-April 1997

[Ram00] R Ramakrishnan & J Gehrke, Database

Management Systems, McGraw Hill, 2000

[Sen01] “Sentences DB”, based on the Associative

Model of Data, from Lazy Software,
www.lazysoft.com

[Shar78] G C H Sharman and N Winterbottom, “The

Data Dictionary Facilities of NDB”, Proc 4th Int.
Conf on Very Large Databases (VLDB), pp 186-
197, IEEE 1978

[Shar88] G C H Sharman and N Winterbottom, “The

Universal Triple Machine: a Reduced Instruction
Set Repository Manager”, Proceedings of
BNCOD 6, pp189-214, 1988

[TriStarp] TriStarp Web Site:

http://www.dcs.bbk.ac.uk/~tristarp

[Wes00] T Westmann, D Kossmann, S Helmer, G

Moerkotte, “The Implementation and
Performance of Compressed Databases”, ACM
SIGMOD Record Vol 29, No 3, pp 55-67,
September 2000

[Ziv77] J Ziv, A Lempel, “A Universal Algorithm

for Sequential Data Compression”, IEEE
Transactions on Information Theory, 22(1), pages
337-343, 1977

SIGMOD Record, Vol. 32, No. 1, March 2003 11

