Rendering and Photon Mapping

Plan of action

\[L_I(x, \omega) = L_R(x, \omega) + \int \int f(x, x' \rightarrow x, \omega) L_I(x, x' \rightarrow x) G(x, x') \, \mathrm{d}A' \]

- Find a way to approximate the Li terms
- Find a way to approximate the integral
- This will produce Lo result.
- Do this only for points \(x \) and directions \(\omega \) that contribute to the image you’re making

Practical Constraints

- Our goal is often to produce the best image within a limited amount of time
- This means we can’t perfectly simulate LT
- Variance Errors
 - Look like noise
- Bias (Mean) Errors
 - Physically wrong (e.g. too dark in certain places)

Noisy Estimators

- Say the true value is \(L_T(x, \omega) \)
- Imagine some method that computes
 \[L_{\text{est}}(x, \omega) = L_T(x, \omega) + \frac{1}{N} \sum_{i=1}^{N} \text{rand}(\cdot) \]
- Limit as \(N \) goes to infinity is correct
- For any finite \(N \), the result is noisy (has variance)

Biased Sampling Estimators

- Say the true value is \(L_T(x, \omega) \)
- Imagine some method that computes
 \[L_{\text{est}}(x, \omega) = L_T(x, \omega) - K(x, \omega)/M \]
- Limit as \(M \) goes to infinity is correct
- If \(K \) is everywhere positive, then for any finite \(M \), our solution is too small

Sources of Bias

- May result from assumptions about model
 – Radiosity assumes perfectly diffuse surfaces
- May result from biased sampling
 – Photon mapping emphasizes LS*DE and LDE paths
Joton

- Representation of a probabilistic photon group – a bunch of photons that we may want to sample.
- \(J = (x, \omega, \Phi) \), where \(\Phi \) is power arriving at the surface, and \(\omega \) is the direction of incident light, \(x = pt \) on surface. Units of \(J \) = radiance.
- Photon map = record of lots of \(J \)-values.

Estimating light from a surface to the eye

- Look at \(J \) values near the relevant surface point
- Reflectance function (\(f_R \)) on the surface
- Combine by summation (low budget integration) to estimate \(L_R \)

Russian Roulette

- Suppose 100 Jotons of power 1 hit a surface that reflects diffusely with reflectance \(k \).
- Naïve sim: 100 Jotons with power \(k \) leave surface
- Clever hack: (100 \(k \)) photons with power 1 leave surface.

Why?

- Fewer jotons (‘cuz \(k < 1 \))
- “Weak” jotons disappear and we don’t waste computation on them
- Photon map will only store photons with power \(\sim 1 \), so all contribute equally to estimate of integral, so variance is reduced.

How does Photon Mapping work?

- Reflect jotons just like photons...but instead of a fraction of incoming power, reflect with a probability proportional to reflectance.
- If not reflected, it gets dropped from simulation.
- \(P(\text{bounce } A) = \frac{L_R(x, \omega_O)}{L_I(x, \omega_I)} \)
- (for diffuse surface, this is just diffuse reflectivity!)

Program Structure

- Psuedo-code for the Photon Mapping algorithm:
 Forward Trace Caustic (Specular Interreflection) Paths into Caustic Photon Map (High-res)
 Forward Trace Diffuse Interreflection Paths into Diffuse Photon Map (Low-res)
 Balance Caustic and Diffuse Trees
 Backward Trace Photons
 - Illumination = Caustic + Diffuse + direct illumination
Caustic tracing

repeat numCaustics times
J := random photon from random light
absorbed := false
 do
 S := first intersection between J and scene
 r := random(0,1)
 if (r < P(diffuse)) // diff. reflection
 if "LS+" path then write J to caustics map
 absorbed := true
 else if (r < P(diffuse) + P(specular))
 J := mirror J about normal
 scale Jpower by specular color
 else if r < P(diffuse) + P(specular) + P(transmit)
 J := refract J
 if total internal refraction then
 absorbed := true
 scale Jpower by transmission color
 else
 absorbed := true
 while not absorbed
 else if r < P(diffuse) + P(specular) + P(transmit)
 J := refract J
 if total internal refraction then
 absorbed := true
 scale Jpower by transmission color
 else
 absorbed := true
while not absorbed

Initial joton power

• For each point from which jotons are emitted:
Starting power = totalEmitterPower/numCaustics

Dealing with color:
(brdf.emissive/brdf.emissive.sum()) *
(totalEmitterPower / numCaustics)
TotalEmitterPower = Sum(tri.triangle.area() *
emissive.sum())
Summed over all emitters.

Backward Tracing

for each pixel(x, y)
 R := ray from eye through (x, y)
 S := get first intersection(R, Scene)
 image(x,y) :=
 direct illumination at S
 from all lights (with shadowing)
 + caustic radiance estimate
 + diffuse radiance estimate

Diffuse tracing

repeat numDiffuse times
J := random photon from random light
absorbed := false
while not absorbed
 S = first intersection between J and scene
 r := random(0, 1)
 if r < P(diffuse) // i.e., if it's diffusely reflected
 if (not "LS*D" path)
 write J to diffuse photon map
 scale Jpower by diffuse color
 J := random hemisphere direction
 else if r < P(diffuse) + P(specular)
 J := reflect J about normal
 scale Jpower by specular color
 else if r < P(diffuse) + P(specular) + P(transmission)
 J := refract J
 if total internal refraction then absorbed := true
 scale Jpower by transmission color
 else
 absorbed := true
 while not absorbed

Direct Illumination

Direct Illumination (x, N)
C := 0
for each light L with normal N_L, radiosity B
 for count := 1 … numShadowRays
 x_L := random point on L
 ω_L := (x_L – x) / || x_L – x ||
 r := || x_L – x ||
 if visible(x, x_L)
 C := C + max(N ⋅ ω_L, 0) * k_d *
 max(-N_L ⋅ ω_L, 0) * B(x_L) / (π * r^2)
 C := C * A_L / numShadowRays
return C
Radiance Estimate(x, N)

(used for both diffuse and caustic maps)

$C := 0$

For each photon J in photon map within radius r of x

$C := C + \max(N \cdot -\omega_J, 0) \cdot k_d \cdot L_J$

return $C / (\pi r^2)$