Frequent Item Sets

Chau Tran & Chun-Che Wang
Outline

1. Definitions
 - Frequent Itemsets
 - Association rules
2. Apriori Algorithm
Motivation 1: Amazon suggestions

Frequently Bought Together

- Kit Kat Candy Bar, Crisp Wafers in Milk Chocolate, 1.5-Ounce Bars (Pack of 36) $28.63 ($0.53 / oz)
- Reese's Peanut Butter Cups, 1.5-Ounce Packages (Pack of 36) $24.30 ($0.45 / oz)
- Twix-chocolate Caramel Cookie Bars, 36ct $32.97 ($0.916 / 10 Items)
Amazon suggestions (German version)
Motivation 2: Plagiarism detector

- Given a set of documents (e.g. homework handin)
 - Find the documents that are similar
Motivation 3: Biomarker

- Given the set of medical data
 - For each patient, we have his/her genes, blood proteins, diseases
 - Find patterns
 - which genes/proteins cause which diseases
What do they have in common?

- A large set of **items**
 - things sold on Amazon
 - set of documents
 - genes or blood proteins or diseases

- A large set of **baskets**
 - shopping carts/orders on Amazon
 - set of sentences
 - medical data for multiple of patients
Goal

- Find a general many-many mapping between two set of items
 - \{Kitkat\} \Rightarrow \{Reese, Twix\}
 - \{Document 1\} \Rightarrow \{Document 2, Document 3\}
 - \{Gene A, Protein B\} \Rightarrow \{Disease C\}
Approach

- $A = \{A_1, A_2, \ldots, A_m\}$
- $B = \{B_1, B_2, \ldots, B_n\}$

A, B are subset of $I = \text{set of items}$

$$P(B|A) = \frac{P(A,B)}{P(A)} = \frac{\text{Count}(A,B)}{\text{Count}(A)}$$
Definitions

- **Support** for itemset A: Number of baskets containing all items in A
 - Same as Count(A)

- Given a support threshold s, the set of items that appear in at least s baskets are called frequent itemsets
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}

<table>
<thead>
<tr>
<th>B1 = {m, c, b}</th>
<th>B2 = {m, p, j}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3 = {m, b}</td>
<td>B4 = {c, j}</td>
</tr>
<tr>
<td>B5 = {m, p, b}</td>
<td>B6 = {m, c, b, j}</td>
</tr>
<tr>
<td>B7 = {c, b, j}</td>
<td>B8 = {b, c}</td>
</tr>
</tbody>
</table>

- **Frequent itemsets for support threshold = 3:**

 - \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}
Association Rules

- A ⇒ B means: “if a basket contains items in A, it is likely to contain items in B”
- There are exponentially many rules, we want to find significant/interesting ones
- Confidence of an association rule:
 - Conf(A ⇒ B) = P(B | A)
Interesting association rules

● Not all high-confidence rules are interesting
 ○ The rule $X \Rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X), and the confidence will be high

● Interest of an association rule:
 ○ $\text{Interest}(A \Rightarrow B) = \text{Conf}(A \Rightarrow B) - P(B)$

 $$= P(B \mid A) - P(B)$$
• Interest($A \Rightarrow B$) = $P(B \mid A) - P(B)$
 ○ > 0 if $P(B \mid A) > P(B)$
 ○ $= 0$ if $P(B \mid A) = P(B)$
 ○ < 0 if $P(B \mid A) < P(B)$
Example: Confidence and Interest

<table>
<thead>
<tr>
<th>B1 = {m,c,b}</th>
<th>B2 = {m,p,j}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3 = {m,b}</td>
<td>B4 = {c,j}</td>
</tr>
<tr>
<td>B5 = {m, p, b}</td>
<td>B6 = {m,c,b,j}</td>
</tr>
<tr>
<td>B7 = {c,b,j}</td>
<td>B8 = {b,c}</td>
</tr>
</tbody>
</table>

- **Association rule:** \{m,b\} \rightarrow c
 - Confidence = \frac{2}{4} = 0.5
 - Interest = 0.5 - \frac{5}{8} = -\frac{1}{8}
 - High confidence but not very interesting
Overview of Algorithm

- **Step 1:** Find all frequent itemsets I
- **Step 2:** Rule generation
 - For every subset A of I, generate a rule $A \Rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Output the rules above the confidence threshold
Example: Finding association rules

- Min support $s=3$, confidence $c=0.75$
- 1) Frequent itemsets:
 - \{b,m\} \{b,c\} \{c,n\} \{c,j\} \{m,c,b\}
- 2) Generate rules:
 - $b \Rightarrow m = \frac{4}{6}$
 - $b \Rightarrow c = \frac{5}{6}$
 - $b,m \Rightarrow c = \frac{3}{4}$
 - $m \Rightarrow b = \frac{5}{6}$
 - $b,c \Rightarrow m = \frac{3}{6}$
How to find frequent itemsets?

- Have to find subsets A such that $\text{Support}(A) > s$
 - There are 2^n subsets
 - Can’t be stored in memory
How to find frequent itemsets?

- Solution: only find subsets of size 2
Frequent pairs are common, frequent triples are rare, don’t even talk about n=4
Let’s first concentrate on pairs, then extend to larger sets (wink at Chun)
The approach
 - Find Support(A) for all A such that |A| = 2
Naive Algorithm

- For each basket \(b \):
 - for each pair \((i_1,i_2) \) in \(b \):
 - increment count of \((b_1,b_2) \)
- Still fail if \((\#\text{items})^2\) exceeds main memory
 - Walmart has \(10^5 \) items
 - Counts are 4-byte integers
 - Number of pairs = \(10^5 \times (10^5 - 1) / 2 = 5 \times 10^9 \)
 - \(2 \times 10^{10} \) bytes (20 GB) of memory needed
Not all pairs are equal

● Store a hash table
 ○ (i1, i2) => index

● Store triples [i1, i2, c(i1,i2)]
 ○ uses 12 bytes per pair
 ○ but only for pairs with count > 0

● Better if less than \(\frac{1}{3} \) of possible pairs actually occur
4 bytes per pair

Triangular Matrix

12 per occurring pair

Triples
Summary

● What?
 ○ Given a large set of baskets of items, find items that are correlated

● Why?

● How?
 ○ Find frequent itemsets
 ■ subsets that occur more than s times
 ○ Find association rules
 ■ Conf(A ⇒ B) = Support(A,B) / Support(A)
A-Priori Algorithm
Naive Algorithm Revisited

- **Pros:**
 - Read the entire file (transaction DB) once

- **Cons**
 - Fail if (#items)^2 exceeds main memory
A-Priori Algorithm

- Designed to reduce the number of pairs that need to be counted
- How?
 hint: There is no such thing as a free lunch
- Perform 2 passes over data
A-Priori Algorithm

- **Key idea**: monotonicity
 - If a set of items appears at least s times, so does every subset
- **Contrapositive for pairs**
 - If item i does not appear in s baskets, then no pair including i can appear in s baskets
A-Priori Algorithm

- **Pass 1:**
 - Count the occurrences of each *individual item*
 - items that appear at least s time are the frequent items
- **Pass 2:**
 - Read baskets again and count in only those pairs where both elements are frequent (from pass 1)
A-Priori Algorithm

Pass 1: Item counts

Pass 2: Frequent items

Counts of pairs of frequent items (candidate pairs)
Frequent Tripes, Etc.

For each k, we construct two sets of k-tuples

C_k
Candidate k-tuples = those might be frequent sets (support > s)

L_k
The set of truly frequent k-tuples

Diagram:

1. All items
2. Count the items
3. Construct
4. Count the pairs
5. To be explained
Example

- Hypothetical steps of the A-Priori algorithm
 - $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
 - Count the support of itemsets in C_1
 - Prune non-frequent: $L_1 = \{ b, c, j, m \}$
 - Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
 - Count the support of itemsets in C_2
 - Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
 - Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
 - Count the support of itemsets in C_3
 - Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$
A-priori for All Frequent Itemsets

- For finding frequent k-tuple: Scan entire data k times
- Needs room in main memory to count each candidate k-tuple
- Typical, k = 2 requires the most memory
What else can we improve?

- Observation

In pass 1 of a-priori, most memory is idle!

Can we use the idle memory to reduce memory required in pass 2?
PCY Algorithm

- PCY (Park-Chen-Yu) Algorithm
- Take advantage of the idle memory in pass 1
 - During pass 1, maintain a hash table
 - Keep a count for each bucket into which pairs of items are hashed

```plaintext
FOR (each basket) :
  FOR (each item in the basket) :
    add 1 to item’s count;
  FOR (each pair of items) :
    hash the pair to a bucket;
    add 1 to the count for that bucket;
```
PCY Algorithm - Pass 1

Define the hash function: \(h(i, j) = (i + j) \mod 5 = K \) (Hashing pair \((i, j)\) to bucket \(K\))

Pass 1

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

The hash table is

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

For \(s=3\), \(L_1 = \{1, 2, 3, 5\}\), and Bitmap \(\{1, 0, 1, 1, 1\}\)
Observations about Buckets

<table>
<thead>
<tr>
<th>Bucket #</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

- If the count of a bucket is \geq support s, it is called a **frequent bucket**
- For a bucket with total count less than s, none of its pairs can be frequent. Can be eliminated as candidates!
- For Pass 2, only count pairs that hash to frequent buckets
PCY Algorithm - Pass 2

- Count all pairs \(\{i, j\} \) that meet the conditions
 1. Both \(i \) and \(j \) are frequent items
 2. The pair \(\{i, j\} \) hashed to a frequent bucket
 \((\text{count} \geq s) \)
- All these conditions are necessary for the pair to have a chance of being frequent
PCY Algorithm - Pass 2

Hash table after pass 1:

\[
\begin{array}{|c|c|}
\hline
\text{Bucket #} & \text{Count} \\
0 & 6 \\
1 & 2 \\
2 & 4 \\
3 & 4 \\
4 & 5 \\
\hline
\end{array}
\]

For s=3, L_1 = \{1, 2, 3, 5\}, and Bitmap \{1, 0, 1, 1, 1\}

Pass 2

Frequent items are \{1, 2, 3, 5\}

Candidate pairs and their counts

<table>
<thead>
<tr>
<th>Pair</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 4)</td>
<td>4</td>
</tr>
<tr>
<td>(2, 3)</td>
<td>3</td>
</tr>
<tr>
<td>(1, 5)</td>
<td>2</td>
</tr>
<tr>
<td>(2, 4)</td>
<td>2</td>
</tr>
<tr>
<td>(3, 4)</td>
<td>2</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>4</td>
</tr>
</tbody>
</table>

frequent itemsets are

\{1\}, \{2\}, \{3\}, \{5\}, \{1, 3\}, \{2, 3\}, \{2, 5\}
Main-Memory: Picture of PCY

Pass 1
- Hash table for pairs

Pass 2
- Item counts
- Frequent items
- Bitmap
- Counts of candidate pairs
Refinement

- Remember: Memory is the **bottleneck**!
- Can we further limit the number of candidates to be counted?
- Refinement for PCY Algorithm
 - Multistage
 - Multihash
Multistage Algorithm

- **Key Idea:** After Pass 1 of PCY, rehash only those pairs that qualify for pass 2 of PCY
- Require additional pass over the data
- Important points
 - Two hash functions have to be independent
 - Check both hashes on the third pass
Multihash Algorithm

- **Key Idea**: Use several independent hash functions on the first pass.
- **Risk**: Halving the number of buckets doubles the average count.
- If most buckets still not reach count s, then we can get a benefit like multistage, but in only 2 passes!
- **Possible candidate pairs** $\{i, j\}$:
 - i, j are frequent items
 - $\{i, j\}$ are hashed into both frequent buckets
Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k
- Can we use fewer passes?
- Use 2 or fewer passes for all sizes
 - Random sampling
 - may miss some frequent itemsets
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen (not going to converge)
Random Sampling

- Take a random sample of the market baskets
- Run A-priori in **main memory**
 - Don’t have to pay for disk I/O each time we read over the data
 - Reduce the support threshold proportionally to match the sample size (e.g., 1% of Data, support $\Rightarrow 1/100 \times s$)
- Verify the candidate pairs by a second pass
SON Algorithm

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets.

- Possible candidates:
 - Union all the frequent itemsets found in each chunk.
 - Why? “Monotonicity” idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

- On a second pass, count all the candidates.
SON Algorithm - Distributed Version

- **MapReduce for Pass 1**

 - **Distributed data mining**
 - **Pass 1: Find candidate itemsets**
 - Map: $(F,1)$
 - F : frequent itemset
 - Reduce: Union all the $(F,1)$
 - **Pass 2: Find true frequent itemsets**
 - Map: (C,v)
 - C : possible candidate
 - Reduce: Add all the (C, v)
FP-Growth Approach
Introduction

● A-priori
 ○ Generation of candidate itemset (Expensive in both space and time)
 ○ Support counting is expensive
 ■ Subset checking
 ■ Multiple Database scans (I/O)
FP-Growth approach

- FP-Growth (Frequent Pattern-Growth)
 - Mining in main memory to reduce (#DBscans)
 - Without candidate itemsets generation
- Two step approach
 - Step 1: Build a compact data structure called the FP-tree
 - Step 2: Extracts frequent itemsets directly from the FP-tree (Traversal through FP-tree)
FP-Tree construction

- FP-Tree construction
 - Pass 1:
 - Find the frequent items
 - Pass 2:
 - Construct FP-Tree

<table>
<thead>
<tr>
<th>TID</th>
<th>Items bought</th>
<th>Ordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{a, c, d, f, g, i, m, p}</td>
<td>{f, c, a, m, p}</td>
</tr>
<tr>
<td>200</td>
<td>{a, b, c, f, i, m, o}</td>
<td>{f, c, a, b, m}</td>
</tr>
<tr>
<td>300</td>
<td>{b, f, h, i, o}</td>
<td>{f, b}</td>
</tr>
<tr>
<td>400</td>
<td>{b, c, k, s, p}</td>
<td>{c, b, p}</td>
</tr>
<tr>
<td>500</td>
<td>{a, c, e, f, l, m, n, p}</td>
<td>{f, c, a, m, p}</td>
</tr>
</tbody>
</table>
FP-Tree

- FP-Tree
 - Prefix Tree
 - Has a much smaller size than the uncompressed data
 - Mining in main memory
- How to find the Frequent itemset?
 - Tree traversal
 - Bottom-up algorithm
 - Divide and conquer
 - More detail:

FP-Growth V.S A-priori

<table>
<thead>
<tr>
<th></th>
<th>Apriori</th>
<th>FP-Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td># Passes over data</td>
<td>depends</td>
<td>2</td>
</tr>
<tr>
<td>Candidate Generation</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- **FP-Growth Pros:**
 - “Compresses” data-set, mining in memory
 - much faster than Apriori

- **FP-Growth Cons:**
 - FP-Tree may not fit in memory
 - FP-Tree is expensive to build
 - Trade-off: takes time to build, but once it is build, frequent itemsets are read off easily
Acknowledgements

- Stanford CS246: Mining Massive Datasets (Jure Leskovec)
- Mining of Massive Datasets (Anand Rajaraman, Jeffrey Ullman)
- Introduction to Frequent Pattern Growth (FP-Growth) Algorithm (Florian Verhein)
- NCCU: Data-mining (Man-Kwan Shan)
- Mining frequent patterns without candidate generation. A frequent-tree approach, SIGMOD '00 Proceedings of the 2000