Minecraft 4 Feedback

• Looks good!
Platformer

- A game that minimally involves platforms
- Not based on any game in particular
 - Super Mario 64?
 - Team Fortress 2?
- Completely up to you to make unique gameplay
Breakdown

• Week 1 (collision debugger)
 – Raycasting II
 – Collision detection

• Week 2
 – OBJ loading
 – Collision response

• Week 3
 – Pathfinding
QUESTIONS?
LECTURE 7

Non-Voxel Collisions
Non-Voxel Collisions

MOTIVATION
To Review

• Entity movement models are dependent on collisions

• Collision are different for:
 – Entity-entity collisions
 – Entity-environment collisions

• All of this controls player movement
Voxel is nice...

- AABB + block based world makes it easy to:
 - Collide
 - Raycast
 - Manipulate the world

- Great for a number of gameplay aesthetics:
 - World generation/exploration
 - Construction
...but not always great

- What if I want:
 - Slopes/ramps/curved surfaces
 - Non 90 degree angles
 - Environment objects of varying size

- In Minecraft, some of these issues can be solved with mods, some can’t
What do we really want?

• Arbitrary environment representation
 – Not restricted to a grid or size
• Arbitrary shapes in that environment
 – Allow for sloped surfaces
 – Allow for approximated curved surfaces
• We want TRIANGLES!
• What shape should entities be?
Shape: AABB

- **Pros:**
 - Simple collision test for axis-aligned worlds

- **Cons:**
 - Entities don’t have same diameter in all directions
 - Complicated collision test for arbitrary worlds
 - Entities “hover” on slopes
 - Stairs need special handling
Shape: Cylinder

• Pros:
 – Entities have same diameter in all directions

• Cons:
 – Collisions even more complicated by caps
 – Same slope hover problem
 – Same stairs problem
Shape: Upside-down cone

• **Pros:**
 – Entities don’t hover on slopes
 – Entities naturally climb stairs (kinda)

• **Cons:**
 – Still more complicated collision tests
 – Sliding like this may be undesirable
Shape: Ellipsoid

• Pros:
 – Simpler collisions than any of the others for arbitrary triangle world
 – Entities closer to the ground on slopes
 – Entities still climb stairs (if they’re low enough)

• Cons:
 – Entities “dip” down a bit going off edges
After Platformer ...

• Environment represented as an arbitrary mesh of triangles
• Entities represented as ellipsoids
• We need to build:
 – A basic mesh representation
 – Ellipsoid-triangle collisions
 – Ellipsoid raycasting
 – Triangle raycasting
 – Navigation through the world
QUESTIONS?
LECTURE 7
Raycasting II
Ellipsoid Raycasting II

ELLIPSOID RAYCASTING
Raycasting a circle

• Before we try 3D, let’s think in 2D
• Ray: position and direction
 • \(\vec{r}(t) = \vec{p} + t\vec{d} \)
 • \(\vec{d} \) is a normalized vector
• Make every circle a unit circle at the origin (simpler to raycast)
 – Translate circle center and ray origin by -(circle center)
 – Scale circle and ray origin and direction relative to radius \((1/r)\)
 • DO NOT RE-NORMALIZE the ray direction vector
• Plug ray equation into equation for unit circle at the origin:
 \[x^2 + y^2 = (\vec{p}.x + \vec{d}.x*t)^2 + (\vec{p}.y + \vec{d}.y*t)^2 = 1 \]
• \(t \) is the only real variable left, solve with quadratic formula
 – \(t \) gives you the intersection point for both the unit circle with the transformed ray, and the original circle with the untransformed ray
 • Because we haven’t re-normalized the direction

Raycasting a Sphere

• Unit sphere at the origin: \(x^2 + y^2 + z^2 = 1 \)
 – Same transformations to both sphere and ray
• Same ray equation (3 components)
• Solve for \(t \):
 – Calculate discriminant \(b^2 - 4ac \)
 • \(< 0\) means no collision (no real roots to quadratic)
 • \(= 0\) means one collision (one root, ray is tangent to sphere)
 • \(> 0\) means two collisions (two roots)
• Plug \(t \) into ray equation to get 3D intersection
Raycasting an Ellipsoid
• Sphere intersections are way easier than ellipsoid intersections
• Squish the entire world so the ellipsoid is a unit sphere!
 – Do detection in that space, convert back
• Change of vector spaces:
 – Ellipsoid radius $R = (r_x, r_y, r_z)$
 – Use basis $(r_x,0,0)$, $(0,r_y,0)$, $(0,0,r_z)$
 – Ellipsoid space to sphere space: component-wise division by R!
Raycasting an Ellipsoid

• Convert from ellipsoid space to unit sphere space
 – Don’t forget to transform to origin as well as scale

• Solve sphere equation for the new ray

• Plug t into the original ray equation to get intersection point
Raycasting II – Ellipsoid Raycasting

QUESTIONS?
Raycasting to the environment

• We can raycast to ellipsoids, great
• Need some way to be able to raycast to our environment as well
• This can be used for gameplay like bullets, lasers, line of sight, etc...
• More importantly, you will use this in your sphere-triangle collision detection
Raycasting to the environment

- Our environment is made up entirely of polygons
- All polygons can be decomposed into triangles
 - Even ellipsoids are approximated by triangles when being drawn
- So to raycast the environment, raycast to each triangle, and take the closest intersection
Ray-triangle intersection

- Given: Ray casted from \vec{p} in the direction of \vec{d}
 - Ray equation $\vec{r}(t) = \vec{p} + t\vec{d}$
- Goal: find \vec{x}, the point on the triangle
- There might not be a point \vec{x} which exists in that triangle
- But there is a point \vec{x} that exists in the plane of that triangle
 - t value might just be negative (the point is in the opposite direction of the ray)
Ray-triangle intersection

- Point \hat{x} on triangle plane if $\hat{n} \cdot (\hat{x} - \hat{s}) = 0$
 - Where \hat{s} is any point on the plane, such as one of the vertices
 - \hat{n} is the normal of the plane
- Set $\hat{x} = \hat{p} + t\hat{d}$
- Solve for t in $\hat{n} \cdot ([\hat{p} + t\hat{d}] - \hat{s}) = 0$
 - That means $t = \frac{\hat{n} \cdot (\hat{p} - \hat{s})}{\hat{n} \cdot \hat{d}}$
Ray-triangle intersection

- So now we know the point P at which the ray intersects the plane of the triangle
 - But is that point inside the triangle or outside of it?
- Point P (on plane) is inside triangle ABC iff P is on the left of all of the edges (assuming that edges are defined in counter-clockwise order i.e. $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$)

P is to the left of $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$

P is to the right of \overrightarrow{CA}
Ray-triangle intersection

• A point P is to the left of edge AB if the cross product $AB \times AP$ is in the same direction as the triangle normal $-BC \times BP$, and $CA \times CP$ are the other cross products.

• Can calculate normal of a triangle with cross product of two of its edges

$$N = (B - A) \times (C - A)$$

• Now you can compare to see if two vectors are in the same direction by seeing if their dot product is positive

$$(AB \times AP) \cdot N > 0$$
Triangle Raycasting

QUESTIONS?
Lecture 7
Collisions III
The basics

• Entity represented by an ellipsoid
• World represented by a set of triangles
• Continuous collision detection
 – Analytically compute the time of and point contact, translate object to that point
 – What we did for the voxel engine
• Basic idea: formulate motion of the entity as a parametric equation, solve for intersection
 – Only works for simple motion (straight lines)
General algorithm

- Compute the line the player follows in one update
 - Kinda like raycasting start position to end position
- Do ellipsoid-triangle sweep test for all triangles and take the closest result
 - Can optimize this using spatial acceleration data structure to test relevant triangles
 - Closest indicated by smallest positive t value (proportion of update taken resulting in collision)
- Compute remaining translation, sweep again
 - Cut off after a certain number of translations
 - You’ll do this next week
WARNING

• There is A LOT of vector math we’re about to get into
• You DO NOT need to understand all of it
 – Though it may help with debugging
• This is not a math class
 – Don’t memorize the derivations
 – Don’t re-invent the wheel
Collisions III

ELLIPSOID-TRIANGLE COLLISIONS
Ellipsoid-triangle collisions

• Analytic equation for a moving sphere:
 – Unit sphere moving from A at $t = 0$ to B at $t = 1$
 – Location of center: $A + (B - A)t$
 – Point P on the sphere at t if $||[A + (B - A)t] - P||^2 = 1$

• Solve for t in unit sphere space
 – Value stays the same in ellipsoid space!

• Split collision detection into three cases:
 – Triangle interior (plane)
 – Triangle edge (line segment)
 – Triangle vertex (point)
Sphere-interior collision

- Intersect moving sphere with a plane
- If intersection is inside triangle, stop collision test
 - Interior collision always closer than edge or vertex
- If intersection is outside triangle, continue test on edge and vertices
 - NO short circuit
Sphere-interior collision

- **Sphere-plane intersection:**
 - Same thing as ray plane using the point on the sphere closest to the plane!
 - Given plane with normal N, closest point is $A - N$
 - We assume that the sphere starts “above” the triangle
 - Don’t care about colliding a sphere starting below the triangle, this should never happen
Sphere-interior collision

- Point P on plane if
 \[N \cdot (P - S) = 0 \]
 - Where S is any point on the plane, such as one of the vertices
- Set \(P = (A - N) + (B - A)t \)
- Solve for \(t \) in
 \[N \cdot ((A - N) + (B - A)t) - S) = 0 \]
 - That means
 \[t = -\frac{N\cdot(A-N-S)}{N\cdot(B-A)} \]
- This says when the sphere hits the plane
 - May not be in the triangle!
 - Repeat your point-in-triangle test!
QUESTIONS?
Sphere-edge collision

• Sphere vs. edge is the same as sphere vs. line segment
 – Intersect moving sphere with the infinite line containing the edge
 – Reject intersection if it occurs outside the line segment

• How do we collide a moving sphere with a line?
 – Really just finding when sphere center passes within 1 unit of line
 – If we treat the line as an infinite cylinder with radius 1, and the motion of sphere center as ray we can use ray-cylinder intersection
Analytic sphere-edge collision

- Area of parallelogram formed by two vectors is the length of their cross product.
- Defining the surface of an infinite cylinder with vectors:
 - Given two points C and D along cylinder axis.
 - Point P on surface if $\| (P - C) \times (D - C) \|^2 = \|D - C\|^2$
 - $\|D - C\|$ is area of gray parallelogram.
 - $\| (P - C) \times (D - C) \|$ is area of green parallelogram.
 - Area of parallelograms is equal.
 - This means that their height is equal, which means that the distance of P to the line segment is 1.

Green parallelogram area is equal to gray rectangle area if P is on cylinder surface.
Analytic sphere-edge collision

• Set \(P = A + (B - A)t \)
• Substitute into previous equation:
 \[\|([A + (B - A)t] - C) \times (D - C)\|^2 = \|D - C\|^2 \]
• Solving for \(t \), you get a quadratic \((at^2 + bt + c = 0)\) where
 \[a = \|(B - A) \times (D - C)\|^2 \]
 \[b = 2((B - A) \times (D - C)) \cdot ((A - C) \times (D - C)) \]
 \[c = \|(A - C) \times (D - C)\|^2 - \|D - C\|^2 \]
• Solve using quadratic equation, use lesser \(t \) value
Analytic sphere-edge collision

- Discard intersection if not between C and D
 - Will be handled by vertex collision test
- To check if intersection is between C and D:
 - Get vector from C to intersection point P
 \[P - C \]
 - Project this vector onto cylinder axis
 \[(P - C) \cdot \frac{D - C}{\|D - C\|} \]
 - Check if projection is in the range \((0, \|D - C\|)\)
 \[0 < (P - C) \cdot \frac{D - C}{\|D - C\|} < \|D - C\| \]
 - Optimized by multiplying by \(\|D - C\|\):
 \[0 < (P - C) \cdot (D - C) < \|D - C\|^2 \]
 QUESTIONS?
Analytic sphere-vertex collision

- Collision test against a triangle vertex V
- How do we collide a moving sphere against a point?
 - We know how to do a ray-sphere intersection test
 - Moving sphere vs. point is equivalent to sphere vs. moving point
 - Where the point moving in opposite direction
Analytic sphere-vertex collision

- Point P on sphere if $\|P - A\|^2 = 1$
 - Set $P = V - (B - A)t$
 - Solve $\|[V - (B - A)t] - A\|^2 = 1$ for t

- Looks like $at^2 + bt + c = 0$ where

 $a = \|B - A\|^2$
 $b = -2(B - A) \cdot (V - A)$
 $c = \|V - A\|^2 - 1$
QUESTIONS?
LECTURE 7
Tips for Platformer 1
Tips for Platformer 1

COLLISION DEBUGGER
“No, I don’t need a debugger”

- Physics/collision bugs are the hardest type of bugs to track down
- It will be much easier for you to find your mistakes in a controlled environment than for you to make them in your own code
- It’s easier to test to make sure you’ve done it correctly
How does it work?

• You can move around two of the ellipsoids here
 – The green ellipsoid represents an entity at the beginning of the tick
 – The red ellipsoid represents an entity at the end of the tick (without collision)

• The other two ellipsoids are determined by the placement of the first two
 – The first orange ellipsoid represents where the entity will end up via colliding with the green triangles
 – The second orange ellipsoid represents where the entity slides to after hitting the surface
Where do I put my code?

• We recommend that you put your raycasting and collision code in separate files (besides the support code files)

• In order to change the position of the ellipsoids within the debugger …
 – Modify their positions in the view.cpp paintGL function (at the very top)
Collision Data

• Your collision code should return a struct, minimally containing:
 – t-value in [0,1]
 – Normal
 – Point of contact

• You may want to put “fancier” stuff in later
More stuff

• About two sided triangles …
• Don’t worry about colliding ellipsoids with triangles that they are already “inside”
• Don’t worry about colliding ellipsoids with triangles that they are “below”
C++ Tip of the Week

PARAMETRIZED INHERITANCE
// (Parent varies at compile time)
// call Dad::doThis, Kid::doThat,
// Kid<Parent> f3; f3.doThat();
// the compiler just wrote 3 "Kid" classes for us

Parametrized inheritance

```
// call Dad::doThis, Kid::doThat,
// Kid<Parent> f3; f3.doThat();
```

- Haven’t really talked about template classes
- Kinda like generics in Java
- But the thing in the parantheses is just text replaced by the compiler when given actual argument
- Can be used for things like double dispatch.
 - Don’t need to cast things for collision callbacks
LECTURE 7
C++ Anti-Tip of the Week
C++ Anti-Tip of the Week

OPERATOR OVERLOADING
Wait, Operator Overloading?

• In C++, you can tell basic operators to work with classes (or enums!)
 – The basic arithmetic operations are commonly overloaded (+, -, *, /)
 • ++, --, <<, and >> are also often overloaded

• GLM overloads many operators to make vector math convenient
Operator Overloading

- There are many legitimate uses of operator overloading
- But it can be very easy to misuse it
- In general, only use it to objectively make code clearer (to anyone who reads it)
 - even if `myColor%(BLUE->RED[-7])` makes sense to you
Operator Overloading

• You can even overload the function operator () for classes
 — Then you can call objects of that class like functions
 — But you could just give that class a named function, and call that function from your objects

• You can overload the assignment operator = for classes too
Operator Overloading

• The only operators you can’t overload are:
 :: . (dot) ?: (ternary) sizeof

• Meaning you can overload pretty much everything else:
 % ^ | & ~ > < == ! [] () new -> delete

• [Link to FAQ on Operator Overloading](https://isocpp.org/wiki/faq/operator-overloading)
C++ Tip & Anti-Tip of the Week

QUESTIONS?
PLAYTESTING!
Sign up for Platformer1 Design Checks!