Regular and MHR Distributions
Professor Greenwald
2017-02-21

We define the hazard rate function, and then regular and monotone hazard rate (MHR) distributions.

1 An Aside: Survival Distributions

Assume T is a continuous random variable with CDF $F(t)$ and PDF $f(t) > 0$, indicating the probability an event (e.g., marriage, parenthood, migration, death, etc.) has occurred by time $t \geq 0$. So,

$$F(t) = \Pr(T \leq t) = \int_0^t f(x)dx.$$

We also define the survival distribution $S(t)$, which indicates the probability that the event has not occurred by time t:

$$S(t) = \Pr(T > t) = 1 - F(t) = 1 - \int_0^t f(x)dx = \int_t^\infty f(x)dx$$

The hazard rate\footnote{Also called a failure rate} function $h(t)$ describes the instantaneous rate of occurrence of the event:

$$h(t) = \lim_{\delta \to 0} \frac{\Pr[t < T \leq t + \delta | T > t]}{\delta}.$$

The numerator in this expression is the probability that the event will occur in the interval $(t, t + \delta]$, given that it has not occurred by time t, and the denominator is the width of the interval. Hence, this fraction describes the rate of occurrence of the event, per unit of time. Taking the limit as $\delta \to 0$ yields the instantaneous rate of occurrence.

The hazard rate function can be simplified as follows:

$$h(t) = \lim_{\delta \to 0} \frac{\Pr[t < T \leq t + \delta | T > t]}{\delta}$$

$$= \lim_{\delta \to 0} \left(\frac{\Pr[t < T \leq t + \delta, T > t]}{\delta} \right) \left(\frac{1}{\Pr[T > t]} \right)$$

$$= \lim_{\delta \to 0} \left(\frac{\Pr[t < T \leq t + \delta]}{\delta} \right) \left(\frac{1}{\Pr[T > t]} \right)$$

$$= \frac{f(t)}{S(t)}$$

$$= \frac{f(t)}{1 - F(t)}$$

This latter form often rears its\footnote{no-longer-seeming-so-ugly} head in auction analyses.
Usually, a hazard rate is assumed to be increasing, decreasing, or constant. An increasing hazard rate signifies that the unit is becoming more and more prone to failure, with time. A decreasing hazard rate means the opposite: the unit is improving with time. Other possibilities include a U-shaped, or an upside-down U-shaped, hazard rate. The former is often used to model a human life span, because early in life we are very vulnerable, while at mid-life risks level off, until later in life when we are vulnerable again.

2 Regular and MHR Distributions

Observe that the virtual value function of a distribution F relates to the corresponding hazard rate function h as follows:

$$\varphi(v) = v - \frac{1 - F(v)}{f(v)} = v - \frac{1}{h(v)}$$

Now recall that Myerson's optimal auction design recipe requires that the virtual value function be non-decreasing in values: i.e., for $v \geq t \in T$, $\varphi(v) \geq \varphi(t)$. Distributions for which the corresponding virtual value function is non-decreasing are called regular.

A related, and stronger, condition is that the hazard rate function be non-decreasing: i.e., for $v \geq t \in T$, $h(v) \geq h(t)$. This condition is called the monotone hazard rate (MHR) condition. MHR implies regularity, but the two are not equivalent.

Proposition 2.1. MHR implies regularity.

Proof. If $h(v)$ is non-decreasing, then

$$\frac{1}{h(v)} = \frac{1 - F(v)}{f(v)}$$ (1)

is non-increasing. So, for $v \geq t$,

$$\frac{1 - F(v)}{f(v)} \leq \frac{1 - F(t)}{f(t)}.$$ (2)

Likewise,

$$-\frac{1 - F(v)}{f(v)} \geq -\frac{1 - F(t)}{f(t)}.$$ (3)

It follows that the virtual value function is non-decreasing:

$$v - \frac{1 - F(v)}{f(v)} \geq v - \frac{1 - F(t)}{f(t)} \geq t - \frac{1 - F(t)}{f(t)},$$ (4)

Therefore, MHR implies regularity. □
To show that the sets of MHR and regular distributions are distinct, we present an example of a distribution that satisfies regularity, but not MHR. This distribution is said to have “heavy tails.”

Example 2.2 (Regular, and not MHR). The distribution

\[F(v) = 1 - \frac{1}{v + 1}, \quad (5) \]

has density

\[f(v) = \frac{1}{(v + 1)^2}, \quad (6) \]

and support \((0, \infty)\). The CDF and PDF are shown in Figure 1.

The hazard rate function is

\[h(v) = \frac{f(v)}{1 - F(v)} \]

\[= \frac{1}{(v+1)^2} \]

\[= \frac{1}{1 - \left(1 - \frac{1}{v+1}\right)} \]

\[= \frac{1}{v + 1}. \quad (9) \]

Since \(h(v) \) is a strictly decreasing function, \(F \) does not satisfy the MHR condition. However, the virtual value function is non-decreasing:

\[\varphi(v) = v - \frac{1}{h(v)} \]

\[= v - (v + 1) \]

\[= -1. \quad (12) \]

Therefore, \(F \) satisfies the regularity, but not the MHR, condition.

Although \(F \) is regular, Myerson’s scheme for allocating only to bidders with non-negative virtual values would not maximize revenue in an auction where values are distributed according to \(F \), as no good would ever be allocated, and revenue would always be 0. The issue is that \(F \)’s support is infinite.