Introduction to Approximation Algorithms
Professor Greenwald
2017-02-21

We informally define the complexity classes P and NP, and state the conjecture that $P \neq NP$. We then introduce approximation algorithms, and a recipe for analyzing them.

1 P versus NP

After a hard day’s work solving CS1951k homework problems, you can’t wait to see the latest cute dog\(^1\) memes on Facebook. You proceed by opening your favorite browser, and visiting facebook.com. You enter your login and password, and seconds later, you are ready for a healthy dose of memes. Life is good!

On the contrary, life would not be so great if, after entering your credentials (login and password), you would have to wait several minutes (or maybe hours!) to access your account. Moreover, you wouldn’t be very happy if a program that enumerates all possible credentials could find yours, in a short period of time. If that were the case, then your account (and mine) would be very easy to hack, and Facebook wouldn’t know if you prefer cat or dog memes—clearly, an undesirable situation!

Note that, checking whether your credentials are valid (Facebook’s job) is an easy task. On the other hand, blindly trying all possible combinations could be an impossible task (i.e., it could take forever!). With an alphabet of just 52 letters, there are something like 10^{82} possible credentials\(^2\), more than the number of atoms in the universe!\(^3\)

The guess-and-check structure of this problem is at the heart of the P versus NP problem, the most celebrated open question in computer science. This is such a fundamental and important problem that you could win a million dollars if you were to solve it.\(^4\)

In a nutshell, a problem is in the class NP (nondeterministic polynomial time), if verifying a proposed solution to the problem is easy, but generating such a solution is not. In contrast, a problem is in P (polynomial time) if both verifying and generating a solution is easy.

Intuitively, it might seem to you that validating vs. generating credentials are really fundamentally different computational tasks. If you feel this way, then you are in the same boat as the majority of computer scientists today, who conjecture that $P \neq NP$. However, whether these are really fundamentally different computational problems, or whether we simply lack sufficient ingenuity as algorithm designers, remains to be formally argued.

\(^1\) Or maybe cat; we are not judging!

\(^2\) Assuming logins and passwords must be between 5 and 25 characters, ignoring duplicate constraints (i.e., that no two logins can be the same).

\(^3\) There are an estimated 10^{80} atoms in the universe. http://www.wolframalpha.com/input/?i=number+of+atoms+in+universe

\(^4\) http://www.claymath.org/millennium-problems/p-vs-np-problem
2 Recipe for Analyzing Approximation Algorithms

If it turns out that $P \neq NP$, then for problems in NP, and for other so-called NP-hard optimization problems, it will not be possible to design algorithms that simultaneously satisfy the following three requirements: (1) work for any problem instance, (2) run in polynomial time, and (3) return optimal solutions. So, we expect to have to relax at least one of these three requirements. Different relaxations lead to different algorithmic techniques.

If we have reason to believe our algorithm need only handle particular inputs, then a sensible approach is to relax requirement (1), and develop algorithms that handle these special cases only. If instead, we are only willing to relax requirement (2), i.e., not require polynomial-time solutions, then one might try to exploit the structure of the solution space of a problem to design an optimal algorithm. However, this approach does not guarantee that any solution at all will be returned within a reasonable amount of time (even if such an algorithm works very well in practice).

Relaxing requirement (3) means designing algorithms that are not guaranteed to return optimal solutions. There are different ways to relax this requirement. One way is to design an algorithm—usually called a heuristic—that runs fast, and on any input, and to evaluate the quality of its solutions empirically. This approach is akin to an average-case analysis, as it summarizes the quality of the heuristic only on the problem instances on which it is tested. Another approach is to construct an approximation algorithm, i.e., an algorithm whose solution quality is guaranteed to relate somehow to the optimal solution for any input: i.e., in the worst case. This latter approach is what we will explore today, and in upcoming lectures.

Like the design of any algorithm, the design of an approximation algorithm is an art. One needs to think hard about the problem at hand, construct a reasonable algorithm, and then exploit any apparent structure to complete an analysis. That said, there is a scientific component to the analysis, insomuch as that there is a generic recipe that is often followed to make progress. The recipe is as follows:

Call the value of the optimal solution OPT, and the value of the solution obtained by the approximation algorithm APX.

1. Upper bound the value of OPT by UB, perhaps by analyzing some simpler algorithm that is guaranteed to perform better than (or as well as) OPT: i.e., $UB \geq OPT$.

2. Lower bound the value of APX by LB, perhaps by analyzing some simpler algorithm that is guaranteed to perform worse than (or as well as) APX: i.e., $APX \geq LB$.

\[\text{David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge university press, 2011} \]
3. Since $OPT \geq APX$, it follows that $UB \geq OPT \geq APX \geq LB$. So:

\[
\frac{APX}{OPT} \geq \frac{LB}{OPT} \geq \frac{LB}{UB}
\]

The holy grail in approximation algorithm research is to design an algorithm for which $\frac{LB}{UB}$ is a constant, meaning it is independent of the problem’s inputs. In such cases, we say that we have found a constant-factor approximation algorithm.

References