
A brief introduction to kernel classifiers

Mark Johnson
Brown University

October 2009

1 / 21

Outline

Introduction

Linear and nonlinear classifiers

Kernels and classifiers

The kernelized perceptron learner

Conclusions

2 / 21

Features and kernels are duals
• A kernel K is a kind of similarity function

I K(x1, x2) > 0 is the “similarity” of x1, x2 ∈ X
• A feature representation f defines a kernel

I f(x) = (f1(x), . . . , fm(x)) is feature vector

K(x1, x2) = f(x1) · f(x2) =
m

∑
j=1

f j(x1) f j(x2)

• Mercer’s theorem: For every continuous symmetric positive
semi-definite kernel K there is a feature vector function f such
that

K(x1, x2) = f(x1) · f(x2)
I f may have infinitely many dimensions

⇒ Feature-based approaches and kernel-based approaches are
often mathematically interchangable

I Feature and kernel representations are duals
3 / 21

Learning algorithms and kernels

• Feature representations and kernel representations are duals
⇒ Many learning algorithms can use either features or kernels

I feature version maps examples into feature space and
learns feature statistics

I kernel version uses “similarity” between this example
and other examples, and learns example statistics

• Both versions learn same classification function
• Computational complexity of feature vs kernel algorithms can

vary dramatically
I few features, many training examples
⇒ feature version may be more efficient

I few training examples, many features
⇒ kernel version may be more efficient

4 / 21

Outline

Introduction

Linear and nonlinear classifiers

Kernels and classifiers

The kernelized perceptron learner

Conclusions

5 / 21

Linear classifiers
• A classifier is a function c that maps an example x ∈ X to a

binary class c(x) ∈ {−1, 1}
• A linear classifier uses:

I feature functions f(x) = (f1(x), . . . , fm(x)) and
I feature weights w = (w1, . . . , wm)

to assign x ∈ X to class c(x) = sign(w · f(x))
I sign(y) = +1 if y > 0 and −1 if y < 0

• Learn a linear classifier from labeled training examples
D = ((x1, y1), . . . , (xn, yn)) where xi ∈ X and yi ∈ {−1, +1}

f1(xi) f2(xi) yi
−1 −1 −1
−1 +1 +1
+1 −1 +1
+1 +1 −1

6 / 21

Nonlinear classifiers from linear learners
• Linear classifiers are straight-forward but not expressive
• Idea: apply a nonlinear transform to original features

h(x) = (g1(f(x)), g2(f(x)), . . . , gn(f(x)))

and learn a linear classifier based on h(xi)
• A linear decision boundary in h(x) may correspond to a

non-linear boundary in f(x)
• Example: h1(x) = f1(x), h2(x) = f2(x), h3(x) = f1(x) f2(x)

f1(xi) f2(xi) f1(xi) f2(xi) yi
−1 −1 +1 −1
−1 +1 −1 +1
+1 −1 −1 +1
+1 +1 +1 −1

7 / 21

Outline

Introduction

Linear and nonlinear classifiers

Kernels and classifiers

The kernelized perceptron learner

Conclusions

8 / 21

Linear classifiers using kernels
• Linear classifier decision rule: Given feature functions f and

weights w, assign x ∈ X to class

c(x) = sign(w · f(x))

• Linear kernel using features f: for all u, v ∈ X

K(u, v) = f(u) · f(v)

• The kernel trick: Assume w = ∑n
k=1 sk f(xk),

i.e., the feature weights w are represented implicitly by
examples (x1, . . . , xn). Then:

c(x) = sign(
n

∑
k=1

sk f(xk) · f(x))

= sign(
n

∑
k=1

sk K(xk, x))

9 / 21

Kernels can implicitly transform features
• Linear kernel: For all objects u, v ∈ X

K(u, v) = f(u) · f(v) = f1(u) f1(v) + f2(u) f2(v)

• Polynomial kernel: (of degree 2)

K(u, v) = (f(u) · f(v))2

= f1(u)2 f1(v)2 + 2 f1(u) f1(v) f2(u) f2(v) + f2(u)2 f2(v)2

= (f1(u)2,
√

2 f1(u) f2(u), f2(u)2)

· (f1(v)2,
√

2 f1(v) f2(v), f2(v)2)

• So a degree 2 polynomial kernel is equivalent to a linear
kernel with transformed features:

h(x) = (f1(x)2,
√

2 f1(x) f2(x), f2(x)2)

10 / 21

Kernelized classifier using polynomial kernel

• Polynomial kernel: (of degree 2)

K(u, v) = (f(u) · f(v))2

= h(u) · h(v), where:

h(x) = (f1(x)2,
√

2 f1(x) f2(x), f2(x)2)

f1(xi) f2(xi) yi h1(xi) h2(xi) h3(xi) si
−1 −1 −1 +1

√
2 +1 −1

−1 +1 +1 +1 −
√

2 +1 +1
+1 −1 +1 +1 −

√
2 +1 +1

+1 +1 −1 +1
√

2 +1 −1
Feature weights 0 −2

√
2 0

11 / 21

Gaussian kernels and other kernels

• A “Gaussian kernel” is based on the distance ||f(u)− f(v)||
between feature vectors f(u) and f(v)

K(u, v) = exp(−||f(u)− f(v)||2)

• This is equivalent to a linear kernel in an infinite-dimensional
feature space, but still easy to compute

⇒ Kernels make it possible to easily compute over enormous (even
infinite) feature spaces

• There’s a little industry designing specialized kernels for
specialized kinds of objects

12 / 21

Mercer’s theorem

• Mercer’s theorem: every continuous symmetric positive
semi-definite kernel is a linear kernel in some feature space

I this feature space may be infinite-dimensional
• This means that:

I feature-based linear classifiers can often be expressed as
kernel-based classifiers

I kernel-based classifiers can often be expressed as
feature-based linear classifiers

13 / 21

Outline

Introduction

Linear and nonlinear classifiers

Kernels and classifiers

The kernelized perceptron learner

Conclusions

14 / 21

The perceptron learner
• The perceptron is an error-driven learning algorithm for

learning linear classifer weights w for features f from data
D = ((x1, y1), . . . , (xn, yn))

• Algorithm:
set w = 0
for each training example (xi, yi) ∈ D in turn:

if sign(w · f(xi)) 6= yi:
set w = w + yi f(xi)

• The perceptron algorithm always choses weights that are a
linear combination of D’s feature vectors

w =
n

∑
k=1

sk f(xk)

If the learner got example (xk, yk) wrong then sk = yk,
otherwise sk = 0

15 / 21

Kernelizing the perceptron learner
• Represent w as linear combination of D’s feature vectors

w =
n

∑
k=1

sk f(xk)

i.e., sk is weight of training example f(xk)
• Key step of perceptron algorithm:

if sign(w · f(xi)) 6= yi:
set w = w + yi f(xi)

becomes:
if sign(∑n

k=1 sk f(xk) · f(xi)) 6= yi:
set si = si + yi

• If K(xk, xi) = f(xk) · f(xi) is linear kernel, this becomes:
if sign(∑n

k=1 sk K(xk, xi)) 6= yi:
set si = si + yi

16 / 21

Kernelized perceptron learner

• The kernelized perceptron maintains weights s = (s1, . . . , sn)
of training examples D = ((x1, y1), . . . , (xn, yn))

I si is the weight of training example (xi, yi)
• Algorithm:

set s = 0
for each training example (xi, yi) ∈ D in turn:

if sign(∑n
k=1 sk K(xk, xi)) 6= yi:

set si = si + yi

• If we use a linear kernel then kernelized perceptron makes
exactly the same predictions as ordinary perceptron

• If we use a nonlinear kernel then kernelized perceptron makes
exactly the same predictions as ordinary perceptron using
transformed feature space

17 / 21

Gaussian-regularized MaxEnt models
• Given data D = ((x1, y1), . . . , (xn, yn)), the weights w that

maximize the Gaussian-regularized conditional log likelihood are:

ŵ = argmin
w

Q(w) where:

Q(w) = − log LD(w) + α
m

∑
k=1

w2
k

∂Q
∂wj

=
n

∑
i=1
−(f j(xi, yi)− Ew[f j | xi]) + 2αwj

• Because ∂Q/∂wj = 0 at w = ŵ, we have:

ŵj =
1

2α

n

∑
i=1

(f j(yi, xi)− Eŵ[f j | xi])

18 / 21

Gaussian-regularized MaxEnt can be
kernelized

ŵj =
1

2α

n

∑
i=1

(f j(yi, xi)− Eŵ[f j | xi])

Ew[f | x] = ∑
y∈Y

f (y, x) Pw(y | x), so:

ŵ = ∑
x∈XD

∑
y∈Y

ŝy,xf(y, x) where:

ŝy,x =
1

2α

n

∑
i=1

II(x, xi)(II(y, yi)− Pŵ(y, x))

XD = {xi | (xi, yi) ∈ D}

⇒ the optimal weights ŵ are a linear combination of the feature
values of (y, x) items for x that appear in D

19 / 21

Outline

Introduction

Linear and nonlinear classifiers

Kernels and classifiers

The kernelized perceptron learner

Conclusions

20 / 21

Conclusions
• Many algorithms have dual forms using feature and kernel

representations
• For any feature representation there is an equivalent kernel
• For any sensible kernel there is an equivalent feature

representation
I but the feature space may be infinite dimensional

• There can be substantial computational advantages to using
features or kernels

I many training examples, few features
⇒ features may be more efficient

I many features, few training examples
⇒ kernels may be more efficient

• Kernels make it possible to compute with very large (even
infinite-dimensional) feature spaces, but each classification requires
comparing to a potentially large number of training examples

21 / 21

	Introduction
	Linear and nonlinear classifiers
	Kernels and classifiers
	The kernelized perceptron learner
	Conclusions

