A brief introduction to kernel classifiers

Mark Johnson
Brown University

October 2009

1/21

Outline

Introduction

2/21

Features and kernels are duals

e A kernel K is a kind of similarity function

» K(x1,x2) > 01is the “similarity” of x1,x, € X
e A feature representation f defines a kernel

» £(x) = (f1(x),..., fu(x)) is feature vector

K(x,x) = () £(xa) = f%fjm)fj(xz)
L

e Mercer’s theorem: For every continuous symmetric positive
semi-definite kernel K there is a feature vector function f such
that

K(x,x2) = f(x1)-f(x2)
» f may have infinitely many dimensions
= Feature-based approaches and kernel-based approaches are
often mathematically interchangable
» Feature and kernel representations are duals

Learning algorithms and kernels

o Feature representations and kernel representations are duals
= Many learning algorithms can use either features or kernels
» feature version maps examples into feature space and
learns feature statistics
» kernel version uses “similarity” between this example
and other examples, and learns example statistics
¢ Both versions learn same classification function
e Computational complexity of feature vs kernel algorithms can
vary dramatically
» few features, many training examples
= feature version may be more efficient
» few training examples, many features
= kernel version may be more efficient

Outline

Linear and nonlinear classifiers

5/21

Linear classifiers

e A classifier is a function ¢ that maps an example x € X to a
binary class c(x) € {—1,1}
e A linear classifier uses:
> feature functions £(x) = (f1(x),..., fu(x)) and
> feature weights w = (wy, ..., W)
to assign x € X to class c(x) = sign(w - f(x))
» sign(y) = +1ify >0and —1ify <0
e Learn a linear classifier from labeled training examples
D= ((x1,y1),.--,(xn,yn)) where x; € X and y; € {—1,+1}

fxi) fa(xi) | i

-1 -1 | -1
-1 +1 | +1
+1 -1 | +1

+1 +1 | -1

Nonlinear classifiers from linear learners

Linear classifiers are straight-forward but not expressive

Idea: apply a nonlinear transform to original features

h(x) = (g1(£(x)), &(f(x)), ..., &gn(f(x)))

and learn a linear classifier based on h(x;)

A linear decision boundary in h(x) may correspond to a
non-linear boundary in £(x)

Example: iy (x) = f1(x), ha(x) = f2(x), ha(x) = f1(x) f2(x)
filxi) fo(xi) fi(xi)fa(xi) | i

-1 -1 +1 -1
-1 +1 -1 +1
+1 —1 -1 +1

+1 +1 +1 -1

Outline

Kernels and classifiers

8/21

Linear classifiers using kernels

e Linear classifier decision rule: Given feature functions f and
weights w, assign x € X to class

c(x) = sign(w-f(x))
e Linear kernel using features f: forall u,v € X
K(u,v) = f(u)-f(v)

e The kernel trick: Assume w = Y} _; si £(xy),
i.e., the feature weights w are represented implicitly by
examples (x1,...,x,). Then:

c(x) = sign(an:1 s f(xg) - £(x))
= sign(i s K(xg, x))
k=1

Kernels can implicitly transform features

e Linear kernel: For all objects u,v € X

K(u,0) = £(u) £(v) = fi(u)fi(v) + f2(u) f2(0)
e Polynomial kernel: (of degree 2)

(f(u) - £())?
F()? f1(0)? +2f1(u) fi(0) fa(u) fo(0) + fa(u)? f2(0)?
(fr(u)*, V2£1 () fo(u), f2(u)?)
- (f1(0)%,V2£1(0) 2(0), f2(0)?)

e So a degree 2 polynomial kernel is equivalent to a linear
kernel with transformed features:

K(u,v)

h(x) = (i) V2fi(x)f2(x), f2(2)?)

Kernelized classifier using polynomial kernel

e Polynomial kernel: (of degree 2)

K(u,0) = (f(u)-£(v))?
= h(u)-h(v), where:

h(x) = (fi(x)%V2fi(x)fo(x), f2(x)?)
filxi) folxi) | yi [m(x) ha(xi) hs(xi) | si
-1 -1 [-1] +1 V2 41 |1
—1 41 |41 41 V2 41 |+1
+1 =1 |+1] +1 —v2 +1 |+1
+1 41 |[=1] +1 V2 41 | -1
Feature weights | 0 -2v/2 0

11/21

Gaussian kernels and other kernels

o A “Gaussian kernel” is based on the distance ||f(u) — £(v)]]|
between feature vectors f(u) and f(v)

K(u,v) = exp(~|lf(u) — £(0)[|?)

e This is equivalent to a linear kernel in an infinite-dimensional
teature space, but still easy to compute
= Kernels make it possible to easily compute over enormous (even
infinite) feature spaces

e There’s a little industry designing specialized kernels for
specialized kinds of objects

Mercer’s theorem

e Mercer’s theorem: every continuous symmetric positive
semi-definite kernel is a linear kernel in some feature space

» this feature space may be infinite-dimensional
e This means that:

» feature-based linear classifiers can often be expressed as
kernel-based classifiers

» kernel-based classifiers can often be expressed as
feature-based linear classifiers

3/2

Outline

The kernelized perceptron learner

14 /21

The perceptron learner

e The perceptron is an error-driven learning algorithm for
learning linear classifer weights w for features f from data
D = ((F1,91), -, (n, Yn))

e Algorithm:

setw =10
for each training example (x;,y;) € D in turn:
if sign(w - f(x;)) # ys:
setw = w + y; f(x;)

e The perceptron algorithm always choses weights that are a

linear combination of D’s feature vectors

n
W = Zskf(xk)
k=1

If the learner got example (xy, yx) wrong then s; = vy,
otherwise s, = 0

Kernelizing the perceptron learner

e Represent w as linear combination of D’s feature vectors

n
wo=) sef(xg)
=1

i.e., s is weight of training example f(xy)
¢ Key step of perceptron algorithm:
if sign(w - f(x;)) # yi:
setw = w +y; f(x;)
becomes:
if sign (L 5_q s f(xe) - £(xi)) # yi:
sets; =s;+y;
o If K(xg, x;) = f(xx) - £(x;) is linear kernel, this becomes:
if sign ()} s K(xx, xi)) # yi:
sets; =s;+y;

Kernelized perceptron learner

The kernelized perceptron maintains weights s = (s1,...,5,)
of training examples D = ((x1,y1), .-, (Xn, Yn))
> s; is the weight of training example (x;, ;)

Algorithm:

sets =0

for each training example (x;,y;) € D in turn:

if sign() ;4 s K(xx, xi)) # i
sets; =s;+y;

If we use a linear kernel then kernelized perceptron makes
exactly the same predictions as ordinary perceptron

If we use a nonlinear kernel then kernelized perceptron makes
exactly the same predictions as ordinary perceptron using
transformed feature space

Gaussian-regularized MaxEnt models

e Givendata D = ((x1,¥1),- .., (xn,¥n)), the weights w that
maximize the Gaussian-reqularized conditional log likelihood are:

w =

Qw) =

0Q

argmin Q(w) where:
w

m
—log Lp(w) +a Y wy

n

Z _(fj(xi/yi) - Ew[f] | xi]) +2Déw]

i=1

e Because aQ/aw]- = 0 at w = w, we have:

o Y (i)~ Ealf; | 1)
=1

1

Gaussian-regularized MaxEnt can be
kernelized

. 1 ¢
wj = Ez,f]yu _EW[f]'|xi])

Ewlf | x] = Zf]/,x Pw(y | x), s
yey
W = 2 Z x) where:
yey
. 1 ¢
Syx = 5) M x)(W(y,yi) — Pa(y, x))

1

=1
Xp = {xi| (x,y:) € D}

= the optimal weights W are a linear combination of the feature
values of (y, x) items for x that appear in D

19 /21

Outline

Conclusions

20/21

Conclusions

Many algorithms have dual forms using feature and kernel
representations
For any feature representation there is an equivalent kernel
For any sensible kernel there is an equivalent feature
representation
» but the feature space may be infinite dimensional
There can be substantial computational advantages to using
features or kernels
» many training examples, few features
= features may be more efficient
» many features, few training examples
= kernels may be more efficient
Kernels make it possible to compute with very large (even
infinite-dimensional) feature spaces, but each classification requires
comparing to a potentially large number of training examples

21/21

	Introduction
	Linear and nonlinear classifiers
	Kernels and classifiers
	The kernelized perceptron learner
	Conclusions

