
CS1760: Multiprocessor Synchronization Due: 4 October 2018 12:59 PM
Professor: Maurice Herlihy HTA: Jonathan Lister

Programming Assignment 2 - TreeLock

For this assignment, you will be using Peterson’s algorithm to create a new kind of lock that will
provide n-thread mutual exclusion. The stencil code for this assignment is located at the
course's pub directory at /course/cs1760/pub/treeLock/ and can be installed with

cs1760_install treelock
Recall that Peterson’s algorithm, as described in the book, works only when (at most) two
threads are competing for the lock at any time. To solve this, we can arrange individual
instances of the Peterson lock into a tree of locks called a TreeLock. To acquire a TreeLock,
a thread must acquire all of the Peterson locks on the path from the TreeLock's leaf to its root.
Once a thread acquires the root node, it is free to then move on to the critical section to do its
work.

Once you copy the stencil code into your directory, you'll be ready to go! The files you need to
modify are:

TreeLock.java
TestTreeLock.java

Note that a portion of this assignment’s total score is reserved for testing. Passing basic
functionality tests, invoked in BasicTestTreeLock.java, will reward you with some points;
however, we also expect you to write any additional tests you deem necessary.
Failing basic functionality tests does not necessarily imply that you will receive no credit for the
assignment. At the same time, the course staff will be unable to conduct a rigorous inspection of
non-functional code to award partial credit.

To hand in your code for this assignment, run

cs1760_handin treelock

Here are some tips to get you started on the assignment:

1. We don’t have any gotchas in this or any subsequent assignment, but we still implore
you look through the requirements and your code carefully. Murphy’s Law applies here -
any subtle bugs you might have will eventually pop up, so be very careful about how you
write your code. Feel free to use the Eclipse debugger, jdb, or any other debugger you
want!

2. A thread that acquires the root node in the TreeLock would ideally lock as few nodes
as possible in the process. What is the minimum required number of nodes in the
TreeLock? What can we say about shape of the simplest functional tree that these

nodes form?

3. In the stencil code given to you, we've provided a ThreadID.java file. Use the class
defined here to give your threads unique ThreadIDs starting at 0. Look at the
comments in this file for an explanation.

4. When implementing your TreeLock, feel free to modify PetersonLock.java with any
additional fields/methods you see fit, or modify the existing method calls with additional
arguments. Be careful, however - submissions that modify Peterson’s algorithm such
that it is no longer essentially Peterson’s algorithm will receive no credit.

5. When debugging your program, you may find Java's built-in assert statements to be of
use. To run your program with assert statements on, run the following from the
command line after you've compiled your program:

java -ea TestTreeLock

6. If you'd like your assert statements to print values of certain state values such as
ThreadIDs after they've failed, you can do so by modifying your assert statements into
the following form. When the assertion is triggered, the variable information will be
printed to standard output during runtime. You can write an assert statement like this:

assert (true) : "Value of var1: " + var1 + " Value of var2: " + var2;

