
CS1760: Multiprocessor Synchronization Due: 01 November 2018, 12:59 PM
Professor:​ ​​Maurice Herlihy ​​HTA: Jonathan Lister

Programming Assignment 3 - DupLists

Extend the ​OptimisticList​, ​LazyList​, and ​LockFreeList​ list algorithms described in
pages 205, 208, and 213 of the book so that they represent multisets (lists that can contain
duplicates). The stencil code you’ll need to begin this problem can be found at
/course/cs1760/stencil/duplists,​ and can be installed with

cs1760_install duplists

Since the point of this assignment is to introduce you to the sort of design patterns that arise
when creating lock/wait-free implementations of an object’s methods, the stencil code that we
give you already consists of interface definitions. You are expected to provide the method
definitions in the various ​List​ classes that implement the interfaces, and then fill in the tester
class so that you can test your program.

Once you copy the stencil code into your directory, you'll be ready to go! The files you need to
modify are:

LazyDupList.java
LockFreeDupList.java
OptimisticDupList.java
ListTester.java

Note that a portion of this assignment’s total score is reserved for testing. Passing basic
functionality tests, located in ​BasicTestLists.java​ and ​BasicListTester.java​, will
reward you with some points; however, we also expect you to write any additional tests you
deem necessary.
Failing basic functionality tests does not necessarily imply that you will receive no credit for the
assignment. At the same time, the course staff will be unable to conduct a rigorous inspection of
non-functional code to award partial credit.

To hand in your code for this assignment, run

cs1760_handin duplists

Note: ​the handin script expects your files to be found in ​​~/course/cs1760/duplists/​.
If your code is not in that folder, you will have a blank handin and get 0 points.

Here are some tips to get you started on the assignment:

1. Most of the code you will need for this assignment will be from the book, so feel free to
use it!

2. You must use sentinels in your implementations of these lists. This is required to pass
the minimal functionality tests and not including them will probably cause the TA test
suite to break as well.

3. For clarity, here are some specification details. Remember that more than one instance
of an item can exist in a multiset.

a. add(T item)​ should increase the number of instances ​n​ of ​item​ in the list by
one, returning ​True​.

b. remove(T item)​ should return ​False​ if ​n​ == 0. Otherwise (for ​n ​>= 1)
decrease the number of instances of ​item​ in the list by one and return ​True​.

c. contains(T item)​ should return ​True​ for ​n ​>= 1, where ​n ​is the number of
instances of ​item​ in the list. It should return ​False​ otherwise.

d. You are not required to be able to count the number of instances of ​item​ in the
list. You can support this feature if you really want to but the TAs won’t give you
any extra points.

