Problem 1. You are given the algorithm in Figure 1 for constructing a single-reader single-writer (SRSW) M-valued atomic register using single-reader single-writer (SRSW) Boolean atomic registers. Does this proposal work? Either prove the correctness or present a counterexample.

Problem 2. Does Peterson’s two-thread mutual exclusion algorithm work if the shared atomic flag registers are replaced by regular registers? Explain.

Problem 3. Show that with sufficiently many n-thread binary consensus objects and atomic registers, one can implement n-thread consensus over n values.

Problem 4. An A2Cas object represents two locations for values that can be read individually and be modified by an atomically executing method a2cas(). If both locations have the corresponding expected values e_0 and e_1, then a call to a2cas(e_0, e_1, v) will write v to **exactly one** of the two locations, chosen nondeterministically.

What is the consensus number of the a2cas() object? Prove your claim.
public class AtomicSRSWRegister implements Register<int> {
 private static int RANGE = M;
 boolean[] r_bit = new boolean[RANGE]; // atomic boolean SRSW
 public AtomicSRSWRegister(int capacity) {
 for (int i = 1; i <= RANGE; i++)
 r_bit[i] = false;
 r_bit[0] = true;
 }
 public void write(int x) {
 r_bit[x] = true;
 for (int i = x - 1; i >= 0; i--)
 r_bit[i] = false;
 }
 public int read() {
 for (int i = 0; i <= RANGE; i++)
 if (r_bit[i])
 return i;
 return -1; // impossible
 }
}

Figure 1: Boolean to M-valued SRSW Atomic Register Algorithm