
This is a term project description from the MIT version of this course. Your job is to
figure out how to turn it into a capstone project. You should pick a subset of these features
to implement, and clear them with the instructor. You should turn in a detailed design,
due November 5, 2015, which details the overall architecture of your design. Your final
report, due December 10, 2015, should present your final design, code, and performance
numbers. Specifically, for every concurrent data structure you should explain what it does
and why it is correct.

1 Project Overview

We will be building a firewall from scratch: we will see a stream of packets from various
source addresses (represented as arbitrary integers, not necessarily in a compact range) and
perform several operations before sending them to the destination address (also integers)
specified in the header of the packet. By default, packets will be data packets, messages
from source address to destination address with some payload. Our firewall will perform
two primary functions: 1) enforce access controls and 2) filter the payloads for evidence of
bad guys (that the packet is from a suspicious source).

Access control: A primary function of the firewall is to filter packets based on a set of per-
missions and calculate a checksum of the packets that are permitted to pass while dropping
those that are not. These permissions restrict which data packets may proceed based on
their source and destination addresses and will occasionally be modified by configuration
packets. There are two types of permissions:

1. There are permissions that dictate which addresses (in this assignment, an address is
a 4-byte int) are permitted to send packets. We will refer to this rule abstractly by
the name PNG, where PNG[S] is a boolean specifying whether a source address, S, is
permitted to send packets, irrespective of the recipient.

2. There are also permissions that dictate which sets of addresses a particular destination
address is willing to accept packets from. We will refer to this rule abstractly by the
name R, where R[D] is the set of source addresses from which a destination address,
D, is willing to accept packets.

Filtering: Packets which make it through the access control pipeline will be filtered to
check for potential file-sharing. In particular, we will measure a checksum on the body of
each packet and histogram the resulting values. The rationale is that the buckets in the
histogram corresponding to often-shared files will be inordinately large and traffickers in
such data payloads are potential bad guys. We will not actually take action based on the
contents of the histogram, however. We are merely collecting statistics that will be used
by some other hypothetical software to make changes to the permissions via configuration
packets. Also, in a real system, we would deliver the packets that make it through the
access control pipeline to output wires. In our system, once you update the histogram (or
drop the packet if it fails the permissions check) then you are free to discard it.

The Assignment

This assignment will proceed in two phases:

• System Architecture: In this phase you will begin by building a serial reference design
of the firewall system.

This phase will culminate in an interim report, due November 5, 2015, which de-
tails the overall architecture of your design. The interim report should demonstrate
that your design satisfies the specifications and explain the rationale for your design

1



choices. In addition, you should hypothesize about the primary limitations to per-
formance of the lock-based design in the next phase and what approaches you will
pursue to overcome them.

• High-Performance Design: Next, you should evolve your System Architecture from
the previous phase into a high-performance firewall using concepts from the lectures,
previous assignments, and your impeccable engineering intuition. Your report, due
December 10, 2015, should present your final design, showing how it adheres to the
specifications and is correct. Specifically, for every concurrent data structure you
should show your reasoning for why each method is linearizable and whether it is
deadlock-free, starvation-free, lock-free or wait-free. You should detail your explo-
ration of the design space, describing your hypotheses about performance effects and
the experiments you design to test those hypotheses. Finally, you should characterize
the scalability of your design (eg. throughput as a function of number of threads
divided by the throughput of the serial version) and the primary mechanisms you use
to achieve that scalability.

The Specifications

You are given a class called PacketGenerator, which can not be concurrently accessed by
multiple threads and can not be modified. This class represents a network packet stream
with a format which is out of your control. In a real system, packets arrive on the wire
and there is a somewhat complex back-pressure mechanism to negotiate the rate at which
the packets arrive. In our system, we are going to avoid the back-pressure complexity and
instead you will just pull the packets via the getPacket() method (again, this is a serial
method) and thus consume packets at precisely the rate you process them. However, you
will need to guarantee that there are never more than 256 packets in flight at any time,
which mirrors the real-time nature of a real firewall; delivering low-latency performance
in a firewall system implies bounded state due to Little’s Law.

There are two types of packets (of type Packet) returned by getPacket(), configuration
packets and data packets, which are distinguished by an enum, MessageType, with corre-
sponding values ConfigPacket and DataPacket. The class Packet also includes pointers to
the classes Config, Header and Body.

• Data Packets: (Packet.type=DataPacket) Data packets carry a payload called a Body,
which has two fields, iterations and seed. To process a data packet means to apply
the Fingerprint() method (from previous assignments) to the those fields. This is in
contrast to a real packet body, which would just be a long piece of memory containing
data. The Fingerprint() serves as a proxy for calculating a checksum on the body of
a packet, which would ordinarily involve streaming the long piece of memory through
the core. We will use the fingerprint as a way of detecting commonly transferred
(ie. identical) bodies, allowing us to detect potential file sharing. Point-to-point file
sharing protocols typically break up long (media) files into smaller chunks, a packet
train, each piece of which would be identical to the same corresponding chunk shared
by another person, thus generating the same fingerprint as well. You should create
a histogram of the fingerprints, which take values in [0, 216), of the bodies of packets
which are permitted to be processed according to the rules below (ie. a data packet
from source address S to destination address D is permitted to be processed only if
PNG[S]=false and S ∈ R[D]). It is essential that you do not calculate Fingerprint()
for packets that are not permitted to be processed - this is the root of a Denial of
Service attack - coercing the firewall to do unnecessary of work in order to slow down
other traffic. Data packets also carry a Header, which has the following fields:

– source - the source address.

– dest - the destination address.

2



– trainSize - the number of packets from source to dest making up the entire
message between the two.

– sequenceNumber - the packets in a train are ordered by sequenceNumber, counting
from 0 to trainSize-1.

– tag - a pseudo-random number used to distinguish two concurrent trains between
the same source and dest addresses.

• Configuration Packets: (Packet.type = ConfigPacket) Configuration packets are used
to modify the permissions of a particular address in two contexts: 1) when the address
is a source address (ie. whether it is allowed to send packets) and 2) when the address
is a destination address (ie. the set of source addresses it is willing to accept packets
from). As before, we encapsulate the permissions with two theoretical data structures
R and PNG. Recall that R[D] is the set of source addresses from which a destination
address, D, is willing to accept a packet. PNG[S] is a boolean that specifies whether or
not a source address, S, is allowed to send packets, irrespective of the recipient. You
are free to implement the functionality of these two data structures however you like,
but we will refer to them abstractly as R and PNG in the coming text for convenience.

If two configuration packets are processed concurrently, they must be done so atom-
ically - that is, it must appear as though they were processed serially, though there
is no specific requirement on the particular serial order. You should demonstrate the
serializability of configuration packets in the section on correctness in your report.
Configuration packets populate the Config class (but not Header or Body), which has
the following members:

– address - the update is applied to this address (an arbitrary int).

– personaNonGrata - this boolean specifies whether address is permitted to send pack-
ets (false) or not (true). The operations sets PNG[address] =personaNonGrata.

– addressBegin and addressEnd - this half open range of addresses
[addressBegin,addressEnd) will either be included in or excluded from (de-
pending on the setting of acceptingRange, below) the list of source address
intervals previously accepted by address.

– acceptingRange - this boolean specifies whether the range of source addresses
[addressBegin,addressEnd) should be accepted (true) or rejected (false) by des-
tination address address, overriding any previous permissions to that range of
source addresses.

∗ Example 1: if destination address 9 previously accepted packets from
source addresses R[9] ={2-4, 5-7} and received a configuration packet with
acceptingRange = false and address range [4,6), the new range of acceptable
source addresses for destination address 9 would be R[9] ={2-3,6-7}.

∗ Example 2: if destination address 5 previously accepted packets from source
addresses R[5] ={1-2,4-5,7-9} (indeed, the permissions even apply when
sending packets to yourself!) and received a configuration packet with
acceptingRange = true and address range [2,5), the new range of acceptable
source addresses for destination address 5 would be R[5] ={1-5,7-9}.

∗ Note: a data packet from source address, S, to destination address, D, is per-
mitted to be processed if PNG[S]=false and S ∈ R[D]. Further, this test must
be serializable with all configuration packets. For example, it is not permitted
for a configuration packet to modify PNG[S] or R[D] in the interim between a
data packet (from source address S to destination address D) checking PNG[S]
and then checking R[D].

3



The Packet Generator

• Parameters - The PacketGenerator is instantiated with several parameters which all
affect the nature of the traffic it generates:

– numAddressesLog - the log (base 2) of the total number of addresses in the system.

– numTrainsLog - the log (base 2) of the total number of active packet trains.

– meanTrainSize - the average number of packets in a packet train.

– meanTrainsPerComm - the average number of packet trains sent between two ad-
dresses in any particular communication (a sequence of back-to-back packet trains
between the same addresses constitutes a communication).

– meanWindow - the average number of addresses that are active at any given time.
That is, when a new packet train is generated, the source and destination ad-
dresses are chosen from a restricted set of active addresses - meanWindow is the
average size of this set.

– meanCommsPerAddress - the average number of communications that an address
is part of (as either source or destination address) while active. Of course, an
address can (and will) become active again, but only after an extended period of
inactivity.

– meanWork - the average number of iterations in the body of a data packet.

– configFraction - the fraction of packets which are configuration packets (∈ [0, 1]).

– pngFraction - the fraction of configuration packets with personaNonGrata=true
(∈ [0, 1]).

– acceptingFraction - the fraction of configuration packets with
acceptingRange=true (∈ [0, 1]).

• Initialization - After instantiating the PacketGenerator with the parameters above, you
should process A

3
2 (where A is the number of addresses in the system or 2numAddressesLog)

configuration packets (using getConfigPacket()) before starting the worker threads
and measuring throughput. This will ensure that the permissions tables are in steady
state.

Design Considerations

• In order to process configuration packets atomically, it will be necessary to take
out locks on multiple data structures simultaneously. If all of your data structures
are amenable to lock striping (as in PSET4 or Figure 13.6 in the text), you could
consider consolidating the locks into a single bank yielding potentially better cache
performance. Tread carefully; protocols taking out multiple locks are notoriously
prone to deadlock, so consider yours very carefully. Be sure to justify why your
locking protocol is deadlock-free in the report.

• While configuration packets and the permissions lookups for data packets need to be
processed atomically (updating the histogram of Fingerprint() results need not occur
atomically with the permissions lookups, however), this does not imply that any of
your underlying data structures need to be linearizable or anything stronger than
deadlock-free. That said, you should explain what properties your data structures
possess, providing the reasoning for why in the report. However, if you feel that
you could provide the atomicity constraints of the firewall specifications while using
potentially simpler data-structures, that is a perfectly valid approach.

• A nominal implementation of R (where R[D] is the set of source addresses from which
a destination address, D, is willing to accept packets) is a hash table (indexed by

4



destination address) of skip lists (organizing a tree of address intervals). This type of
data structure would require O(log n) time to do a lookup, but fails to take advantage
of the observation that packets between particular source / destination address pairs
are repeated over the length of a train and even over multiple trains (comprising a
communication). In order to exploit this observation, you might consider caching
the result of a permissions lookup for a source / destination address pair. When
we refer to a permissions lookup or the caching of such permissions, we just mean
whatever state your design requires in order to adhere to the specifications above.
For instance, a cached copy could be as simple as a boolean saying whether a data
packet from source address, S, to destination address, D, is permitted to be processed
or not. Whatever the details of your system, here are some general considerations
regarding caching:

– Keeping track of cached entries - Cached copies of permissions lookups for a
source / destination address pair may be the only state that a thread sees when
deciding whether a packet may be processed, thus they must be kept coherent
with the real state, R and PNG. For instance, if PNG[S] transitions from false
to true due to a configuration packet for address=S, then all cache copies with
source address S must be removed (or otherwise reflect the new state). Or, if
a configuration packet with address=D, acceptingRange=false and address range
[S0, Sn) were processed, all pairs 〈Si, D〉 ∀i ∈ [0, n) must be removed from the cache.
So, there is a question of how you go about finding the cached copies that must
be removed in these scenarios.

– Revoking cached entries - In particular, if a configuration packet changes the
permissions such that a cached copy of the permissions of a particular source /
destination address pair is no longer valid, it must not persist after the updates
to R and PNG. This is because processing configuration and data packets must
be linearizable with respect to one another. The most straightforward way to
do this might be to lock down the entries corresponding to R[D], PNG[S] and
all cached copies derived from them - that’s a lot of locks! Because the cache
is (presumably) indexed by a hash of both source and destination address, you
would need to be careful in the order you acquire locks to avoid deadlock.

– Optimistic deleting - Cached copies should provide exactly the same result that
one could obtain by looking up R and PNG directly, so the cached copies can
be invalidated prior to processing the configuration packet with no change to
correctness. So, one could consider an optimistic strategy where one serially
deletes all of the cached copies that a configuration packet would require, knowing
that another thread could simultaneously add some cached copies that conflict.
However, in the typical case, no other thread will actually add any additional
copies and then when you take out locks to process the configuration packet
atomically, you have less total work to do (potentially cleaning up any copies
that were added in the interim) and thus less lock contention.

– Pruning - Eventually, you will see every possible pair of addresses as a source /
destination address pair. So, if you want to avoid the situation where your cache
grows to be the square of the number of addresses (hint: you do), you will need to
prune your cache. Data packets have the fields sequenceNumber and trainSize, so
you could know which packets are the end of a packet train (though, it is possible
for slight reordering between packets in a train, since you can have 256 in flight
at a time...). Do you prune an entry at the end of a packet train, knowing that
a packet train between the same addresses may follow? If not, how would you
know to come back and prune it later?

– To cache or not to cache - So, with all of these complications . . . under what
circumstances does it even make sense to cache?

5



• In past assignments we have made use of a very simple worker model; we had one
Dispatcher thread and n Worker threads, where all Worker threads did the exact same
thing. Of course, there are many other ways of partitioning work among threads with
many tradeoffs in overhead, cache behavior and scalability. Here are some examples:

– Pipeline - You could choose to implement a pipeline style parallelization where
threads are assigned to tasks and packets will be partially processed as they pass
through each pipeline. For instance, you could have a thread pool which only
looks up permissions in the cache and queues up packets which are permitted
to be processed for another thread pool to calculate the Fingerprint(). More
complex operations, like configuration packets or data packets which miss in the
cache (ie. their source / destination address pair is not in the cache), could
be handed off to yet another pool of threads which handle these special cases,
potentially with simpler synchronization - that is, you might try to arrange it
so that a single thread handles all packets which could possibly need to take
out multiple overlapping locks. Of course, how many threads should be mapped
to each of these categories? How do they depend on the parameters of the
PacketGenerator? Pipelines also incur more copying overhead between stages -
how would you decide whether the work in each stage justifies the cost of copying?

– Partial Pipeline - The trickiest part of the firewall application is handling config-
uration packets atomically - could you create just two pipeline stages, handling
configuration packets and data packets with separate thread pools? If you could
serialize the configuration packet processing stage, it may simplify synchroniza-
tion. Then again, how many data packets per configuration packet would you
need for this to not be the bottleneck?

– Worker Model - Each worker processes a packet, whatever type it happens to be,
to completion. It is alluringly simple, but what are your expectations of cache
behavior and lock contention?

Whatever worker model you use, you should consider the requirement that to be
scalable and maintainable for future hardware systems, you should be able to get
more performance by adding more threads. What is your scaling strategy for when
we move beyond the 6.S193 machine in the hypothetical future?

Experiment

You should characterize the performance of your parallel firewall on the following set of
parameter mixes. That is, for each mix, instantiate the PacketGenerator class and test
the throughput as a function of n (number of worker threads) divided by the throughput
of the serial version. Discuss in your report how the different corners of this parameter
space affect performance and what inefficiencies, if any, they expose in your design.

Parameter Mixes
Parameter 1 2 3 4 5 6 7 8
numAddressesLog 11 12 12 14 15 15 15 16
numTrainsLog 12 10 10 10 14 15 15 14
meanTrainSize 5 1 4 5 9 9 10 15
meanTrainsPerComm 1 3 3 5 16 10 13 12
meanWindow 3 3 6 6 7 9 8 9
meanCommsPerAddress 3 1 2 2 10 9 10 5
meanWork 3822 2644 1304 315 4007 7125 5328 8840
configFraction 0.24 0.11 0.10 0.08 0.02 0.01 0.04 0.04
pngFraction 0.04 0.09 0.03 0.05 0.10 0.20 0.18 0.19
acceptingFraction 0.96 0.92 0.90 0.90 0.84 0.77 0.80 0.76

6



This seemingly random smattering of parameter configurations mirrors a familiar sce-
nario in the industry, where you might be confronted with various application spaces, each
with their own peculiarities. It is rather challenging to design something that performs
well in all scenarios, so instead we sample the scenarios we care about and use those pa-
rameters to reign in our designs. This holds for processor design as well as many large
software projects.

BONUS: There is a ninth set of parameters which is vaguely in the space of the eight
above. You should specify how your code should be configured (all parameters, including
number of threads) to maximize the throughput of this mystery workload. The two best
lock-based implementations (highest throughput for 5000ms after the initialization) will
receive an additional 5% on their final grade.

Writeup

Please submit typeset reports summarizing your results from the experiments and the
conclusions you draw from them,. Each of these reports should be a standalone document
that would explain to a reader unfamiliar with this material and course what you did and
why. You should also submit a .jar file of your development directory, containing all of
the working code.

7


