Chapter 33

Implicit Polymorphism

33.1 The Problem

Consider the function

\(\text{(lambda} \ (x \ x) \) \)

The type inference engine would infer that this function has type

\(\alpha \rightarrow \alpha \)

(or some other type, modulo renaming the type variable).

Now consider a program of the form (the \texttt{let} construct is similar to the \texttt{with} in our interpreted language):

\[
\text{(let } ([id \ \text{lambda} \ (x \ x)]) \) \\
(+ \ (id \ 5) \) \\
\text{(id \ 6))) \]

First we need a type judgment for \texttt{let}. Here is a reasonable one: it is exactly what one gets by using the existing rules for functions and applications, since we have consistently defined \texttt{with} as an application of an immediate function:

\[
\frac{\Gamma \vdash v : \tau' \quad \Gamma[x \leftarrow \tau'] \vdash b : \tau}{\Gamma \vdash (\text{let}([x] b)) : \tau}
\]

Given this judgment, the type variable \(\alpha \) in the type inferred for \textit{id} would unify with the type of \textit{5} (namely, \text{number}) at one application and with the type of \textit{6} (also \text{number}) at the other application. Since these are consistent, the unification algorithm would conclude that \textit{id} is being used as if it had the type

\(\text{number} \rightarrow \text{number} \)

in this program.

Now suppose we use \textit{id} in a context where we apply it to values of different types. The following program is certainly legal in Scheme:

\[
\text{(let } ([id \ \text{lambda} \ (x \ x)]) \)
\]
This should be legal even in typed Scheme, because we’re returning the same type of value in both branches of the conditional. But what happens when we supply this program to our type system? It infers that \(id \) has type \(\alpha \rightarrow \alpha \). But it then unifies \(\alpha \) with the type of each of the arguments. Two of these are the same (number) but the first application is to a value of type boolean. This forces the type inference algorithm to try and unify number with boolean. Since these are distinct base types, type inference fails with a type error!

We definitely do not want this program to be declared erroneous. The problem is not with the program itself, but with the algorithm we employ to infer types. That suggests that we should try to improve the algorithm.

33.2 A Solution

What’s the underlying problem in the type algorithm? We infer that \(id \) has type \(\alpha \rightarrow \alpha \); we are then stuck with that type for every use of \(id \). It must therefore be either \(\text{number} \rightarrow \text{number} \) or \(\text{boolean} \rightarrow \text{boolean} \)—but it can’t be both. That is, we cannot use it in a truly polymorphic manner!

This analysis makes clear that the problem has something to do with type variables and their unification. We arrive at a contradiction because \(\alpha \) must unify with both \(\text{number} \) and \(\text{boolean} \). But what if \(\alpha \) didn’t need to do that? What if we didn’t use the same type variable every time? Then perhaps we could avoid the problem entirely.

One way to get fresh type variables for each application of \(id \) is to literally substitute the uses of \(id \) with their value. That is, instead of type checking the program above, suppose we were to check the following program:

\[
\begin{align*}
\text{(let ([(id (lambda (x) x))])} \\
(\text{if ((lambda (x) x) true)} \\
(\text{(lambda (x) x) 5)} \\
(\text{(lambda (x) x) 6)}))
\end{align*}
\]

We don’t want to have to write this program, of course, but that’s okay: a simple pre-processor can substitute every let-bound identifier in the body before type-checking. If we did that, we get a different result from type-checking:

\[
\begin{align*}
\text{(let ([(id (lambda (x) x))])} \\
(\text{if ([(lambda (x) x) true]} \\
(\text{(lambda (x) x) 5)} \\
(\text{(lambda (x) x) 6)}))
\end{align*}
\]

Each use of \(id \) results in a different type; for instance, the \(id \) procedure at \(1 \) might have type \(\alpha \rightarrow \alpha \), \(2 \) might have type \(\beta \rightarrow \beta \) and \(3 \) might have \(\gamma \rightarrow \gamma \). Then \(\alpha \) could unify with type boolean, \(\beta \) with type number and \(\gamma \) with type number. Because these are distinct type variables, they need not unify with one another.
Each application would succeed, and the entire program would successfully pass the type checker. This in fact corresponds more accurately with what happens during execution, because on the first invocation the identifier \(x \) in \(id \) holds a value of boolean type, and on the subsequent invocation (in the first branch of the conditional, in this case) it holds a number. The separate type variables accurately reflect this behavior.

33.3 A Better Solution

The solution we’ve presented above has two problems:

1. It can lead to considerable code size explosion. For instance, consider this program:

   ```
   (let ([x
         (let ([y
               (let ([z 3])
                 (+ z z))])
       (+ y y))]
     (+ x x))
   ```

 Expand it in full. In general, how big can a program grow upon expansion?

2. Since `let` does not permit recursion, consider `letrec` or `local`, the Scheme analog of `rec`. What happens if we substitute code in a recursive definition?

In short, the code substitution solution is not workable, but it does contain the germ of a good idea. We see that what it does is generate fresh type variables at every use: this is the essence of the solution. So perhaps we can preserve the essence while dispensing with that particular implementation.

Indeed, we can build further on the intuition we have developed. A closure has only one name for an identifier, but a closure can be used multiple times, even recursively, without confusion. This is because, in effect, each application consistently renames the bound identifier(s) so they cannot be confused across instances. Working backwards, since we want fresh identifiers that cannot be confused across instances, we want to create an analogous type closure that we instantiate at every use of a polymorphic function.

We will therefore use a modified rule for typing `let`:

\[
\frac{\Gamma \vdash v : \tau' \quad \Gamma[x\leftarrow\text{CLOSE}(\tau')] \vdash b : \tau}{\Gamma \vdash \text{let}(\{x\ v\})\ b : \tau}
\]

That is, we bind \(x \) to a “closed” type when we check the body. The idea is, whenever we encounter this special type in the body, we instantiate its type variables with fresh type variables:

\[
\frac{\Gamma \vdash e : \text{CLOSE}(\tau')}{\Gamma \vdash e : \tau}
\]

where \(\tau \) is the same as \(\tau' \), except all type variables have been renamed consistently to unused type variables.

Returning to the identity procedure, the type inference algorithm binds \(id \) to the type \(\text{CLOSE}(\alpha \rightarrow \alpha) \). At each use of \(id \), the type checker renames the type variables, generating types such as \(\alpha_1 \rightarrow \alpha_1 \), \(\alpha_2 \rightarrow \alpha_2 \), and so on. As we have seen before, these types permit the body to successfully type check. Therefore, we have successfully captured the intuition behind code-copying without the difficulties associated with it.
CHAPTER 33. IMPLICIT POLYMORPHISM

33.4 Recursion

We have provided a rule for let above, but in fact a similar rule can apply to letrec also. There are some subtleties that we must defer to a more advanced setting, but safe uses of letrec (namely, those where the right-hand side is syntactically a procedure) can safely employ the type closure mechanism described above to infer polymorphic types.\footnote{In particular, we are no longer using code-copying, which encounters an obvious difficulty in the presence of recursion.}

33.5 A Significant Subtlety

Alas something is still rotten in the state of inferring polymorphic types. When we rename all type variables in a CLOSE type, we may rename variables that were not bound in the let or letrec expression: for instance,

\[
\text{(lambda (y)} \\
\text{(let ([f (lambda (x) y)])} \\
\text{(if (f true) \\
\text{ (+ (f true) 5))})}
\]

Our algorithm would infer the type CLOSE(\(\alpha \rightarrow \beta\)) (or the equivalent under renaming) for \(f\). (Because \(x\) and \(y\) are not linked in the body, the inference process assigns them potentially different types; hence the presence of both \(\alpha\) and \(\beta\) in the type.)

At the first application, in the test of the conditional, we generate fresh type names, \(\alpha_1\) and \(\beta_1\). The type \(\alpha_1\) unifies with boolean, and \(\beta_1\) unifies with boolean (since it’s used in a conditional context). At the second application, the algorithm generates two fresh names, \(\alpha_2\) and \(\beta_2\). \(\alpha_2\) will unify with boolean (since that is the type of the argument to \(f\)), while \(\beta_2\) unifies with number, because the entire expression is the first argument to addition. Reasoning thus, we can see that the program successfully passes the type checker.

But this program should fail! Simply looking at it, it’s obvious that \(f\) can return either a boolean or a numeric value, but not both. Indeed, if we apply the entire expression to true, there will be a type error at the addition; if we apply it to 42, the type error will occur at the conditional. Sure enough, in our earlier type systems, it would have failed with an error while unifying the constraints on the return types of \(f\). So how did it slip through?

The program successfully passed the type checker because of our use of type closures. We did not, however, correctly apply our intuition about closures. When we apply a closure, we only get new identifiers for those bound by the closures—not those in its lexical scope. The variables in the closure’s lexical scope are shared between all applications of the closure. So should it be in the case of type closures. We should only generate fresh type variables for the types introduced by the let or letrec.

Concretely, we must modify our rule for let (and correspondingly that for letrec) so the type closures track which identifiers must be renamed:

\[
\frac{\Gamma \vdash v : \tau' \quad \Gamma [x \leftarrow \text{CLOSE}(\tau', \Gamma)] \vdash b : \tau}{\Gamma \vdash (\text{let}([x]v)b) : \tau}
\]
33.6. WHY LET AND NOT LAMBDA?

That is, a type closure tracks the environment of closure creation. Correspondingly,

\[\frac{\Gamma \vdash e : \text{CLOSE}(\tau', \Gamma')} \quad \text{where } \tau \text{ is the same as } \tau', \text{except the renaming applies only to type variables in } \tau' \text{ that are not bound by } \Gamma' \]

Applying these rules to the example above, we rename the \(\alpha \)'s but not \(\beta \), so the first use of \(f \) gets type \(\alpha_1 \rightarrow \beta \) and the second use \(\alpha_2 \rightarrow \beta \). This forces \(\beta = \text{number} = \text{boolean} \), which results in a type error during unification.

33.6 Why Let and not Lambda?

The kind of polymorphism we have seen above is called let-based polymorphism, in honor of the ML programming language, which introduced this concept. Note that let in ML is recursive (so it corresponds to Scheme’s letrec or local, and the rec we have studied in this class). In particular, ML treats let as a primitive construct, rather than expanding it into an immediate function application as Scheme does (and as we did with with in our interpreters).

The natural question is to wonder why we would have a rule that makes let-bound identifiers polymorphic, but not admit the same polymorphic power for lambda-bound identifiers. The reason goes back to our initial approach to polymorphism, which was to substitute the body for the identifier. When we have access to the body, we can successfully perform this substitution, and check for the absence of errors. (Later we saw how type closures achieve the same effect while offering several advantages, but the principle remains the same.)

The last example above shows the danger in generalizing the type of lambda-bound identifiers: without knowing what they will actually receive as a value (which we cannot know until run-time), we cannot be sure that they are in fact polymorphic. Because we have to decide at type-checking time whether or not to treat an identifier polymorphically, we are forced to treat them monomorphically, and extend the privilege of polymorphism only to let-bound identifiers. Knowing exactly which value will be substituted turns out to be a gigantic advantage for the type system!

33.7 The Structure of ML Programs

While our type inference algorithm inferred types with type variables, we could not actually exploit this power directly. We could use such a value several times in the same type contexts, and the same expression elsewhere several times in a different type context, but not combine the two copies of the code through a binding. Let-based polymorphism earned us this power of abstraction.

Let-based polymorphism depends fundamentally on having access to the bound value when checking the scope of the binding. As a result, an ML program is typically written as a series of let expressions; the ML evaluator interprets this as a sequence of nested lets. It treats the initial environment similarly as one long sequence of lets, so for instance, if a programmer uses map in a top-level expression, the evaluator effectively puts the use of map in the body of the definition of map. Therefore, the uses of map benefit from the polymorphic nature of that function.
Exercise 33.7.1 What is the time and space complexity of the polymorphic type inference algorithm that uses type closures?

33.8 Interaction with Effects

Suppose we add polymorphically-typed boxes to the language:

\[
\text{box} : \alpha \to \text{ref}(\alpha) \\
\text{unbox} : \text{ref}(\alpha) \to \alpha \\
\text{set-box!} : \text{ref}(\alpha) \alpha \to \text{ref}(\alpha)
\]

(We’re assuming here that \text{set-box!} returns the box as its result.) On their own, they look harmless.

Now consider the following program:

\[
\text{(let ([f (box \lambda (x) x)])} \\
\begin{align*}
\text{(set-box! f (lambda (y) (+ y 5)))} \\
\text{(unbox f) true)}
\end{align*}
\]

When run, this program will yield a run-time error because \(y\) is bound to the value \text{true}, then used in an addition. A sound type system should, therefore, flag this program as erroneous.

In fact, however, this program type checks without yielding an error. Notice that \(f\) has the closed type \(\text{ref} (\alpha \to \alpha)\) in the empty type environment. This type is renamed at each use, which means the function applied to \text{true} has type (say) \(\alpha_2 \to \alpha_2\), even though the value in the box has been re-bound to \text{number} \(\to \text{number}\). In fact, this bug resulting from the unexpected interaction between state and polymorphism lay dormant in ML for many years, and this brief program could crash the system.

What has happened here is that we’ve destroyed the semantics of boxes. The whole point of introducing the box is to introduce sharing; the implementation of the type system has, however, lost that very sharing.

One solution to this problem would be to prohibit the use of boxes on the right-hand side of \text{let} (and \text{letrec}) expressions, or at least not polymorphically generalize them. The problem is actually more general, however: any potential \text{effect} (such as mutation, continuation capture, and so on) runs into similar problems. Studies of large bodies of ML code have shown that programmers don’t in fact need the power of polymorphic generalization for these effects. Therefore, rather than create a vastly more complicated type system, a simple, practical solution is to simply prohibit such effects in locations that the type system will automatically treat as polymorphic.