Chapter 30

Type Soundness

We would like a guarantee that a program that passes a type checker will never exhibit certain kinds of errors when it runs. In particular, we would like to know that the type system did indeed abstract over values: that running the type checker correctly predicted (up to the limits of the abstraction) what the program would do. We call this property of a type system soundness of type system:

For all programs $p$, if the type of $p$ is $\tau$, then $p$ will evaluate to a value that has type $\tau$.

Note that the statement of type soundness connects types with execution. This tells the user that the type system is not some airy abstraction: what it predicts has bearing on practice, namely on the program’s behavior when it eventually executes.

We have to be a bit more careful about how we define type soundness. For instance, we say above (emphasis added) “$p$ will evaluate to a value such that …”. But what if the program doesn’t terminate? So we must recast this statement to say

For all programs $p$, if the type of $p$ is $\tau$ and $p$ evaluates to $v$, then $v : \tau$.

Actually, this isn’t quite true either. What if the program executes an expression like $(\text{first empty})$? There are a few options open to the language designer:

- Return a value such as $-1$. We hope you cringe at this idea! It means a program that fails to check return values everywhere will produce nonsensical results. (Such errors are common in C programs, where operators like malloc and fopen return special values but programmers routinely forget to check them. Indeed, many of these errors lead to expensive, frustrating and threatening security violations.)

- Diverge, i.e., go into an infinite loop. This approach is used by theoreticians (study the statement of type soundness carefully and you can see why), but as software engineers we should soundly (ahem) reject this.

1The term “soundness” comes from mathematical logic.
2We could write this more explicitly as: “For all programs $p$, if the type checker assigns $p$ the type $\tau$, and the semantics say that $p$ evaluates to a value $v$, then the type checker will also assign $v$ the type $\tau$.”
• Raise an exception. This is the preferred modern solution.

Raising exceptions means the program does not terminate with a value, nor does it not terminate. We must therefore refine this statement still further:

For all programs $p$, if the type of $p$ is $\tau$, $p$ will, if it terminates, either evaluate to a value $v$ such that $v : \tau$, or raise one of a well-defined set of exceptions.

The exceptions are a bit of a cop-out, because we can move arbitrarily many errors into that space. In Scheme, for instance, the trivial type checker rejects no programs, and all errors fall under the exceptions. In contrast, researchers work on very sophisticated languages where some traditional actions that would raise an exception (such as violating array bounds) instead become type errors. This last phrase of the type soundness statement therefore leaves lots of room for type system design.

As software engineers, we should care deeply about type soundness. To paraphrase Robin Milner, who first proved a modern language’s soundness (specifically, for ML),

Well-typed programs do not go wrong.

That is, a program that passes the type checker (and is thus “well-typed”) absolutely cannot exhibit certain classes of mistakes.\(^3\)

Why is type soundness not obvious? Consider the following simple program (the details of the numbers aren’t relevant):

```plaintext
{if0 {+ 1 2}
  {{fun {x : number} : number {+ 1 x}} 7}
  {{fun {x : number} : number {+ 1 {+ 2 x}}} 1}}
```

During execution, the program will explore only one branch of the conditional:

\[
\begin{align*}
1,\emptyset & \Rightarrow 1 \\
2,\emptyset & \Rightarrow 2 \\
{+ 1 2},\emptyset & \Rightarrow 3 \\
\{\text{fun } \ldots\} 1,\emptyset & \Rightarrow 4 \\
\end{align*}
\]

but the type checker must explore both:

\[
\begin{array}{c}
\emptyset \vdash : number \\
\end{array}
\]

Furthermore, even for each expression, the proof trees in the semantics and the type world will be quite different (imagine if one of them contains recursion: the evaluator must iterate as many times as necessary to produce a value, while the type checker examines each expression only once). As a result, it is far from

\(^3\)The term “wrong” here is misleading. It refers to a particular kind of value, representing an erroneous configuration, in the semantics Milner was using; in that context, this slogan is tongue-in-cheek. Taken out of context, it is misleading, because a well-typed program can still go wrong in the sense of producing erroneous output.
obvious that the two systems will have any relationship in their answers. This is why a theorem is not only necessary, but sometimes also difficult to prove.

Type soundness is, then, really a claim that the type system and run-time system (as represented by the semantics) are in sync. The type system erects certain abstractions, and the theorem states that the run-time system mirrors those abstractions. Most modern languages, like ML and Java, have this flavor.

In contrast, C and C++ do not have sound type systems. That is, the type system may define certain abstractions, but the run-time system does not honor and protect these. (In C++ it largely does for object types, but not for types inherited from C.) This is a particularly insidious kind of language, because the static type system lulls the programmer into thinking it will detect certain kinds of errors, but it fails to deliver on that promise during execution.

Actually, the reality of C is much more complex: C has two different type systems. There is one type system (with types such as int, double and even function types) at the level of the program, and a different type system, defined solely by lengths of bitstrings, at the level of execution. This is a kind of “bait-and-switch” operation on the part of the language. As a result, it isn’t even meaningful to talk about soundness for C, because the static types and dynamic type representations simply don’t agree. Instead, the C run-time system simply interprets bit sequences according to specified static types. (Procedures like printf are notorious for this: if you ask to print using the specifier %s, printf will simply print a sequence of characters until it hits a null-terminator: never mind that the value you were pointing to was actually a double! This is of course why C is very powerful at low-level programming tasks, but how often do you actually need such power?)

To summarize all this, we introduce the notion of type safety:

Type safety is the property that no primitive operation is ever applied to values of the wrong type.

By primitive operation we mean not only addition and so forth, but also procedure application. In short, a safe language honors the abstraction boundaries it erects. Since abstractions are crucial for designing and maintaining large systems, safety is a key software engineering attribute in a language. (Even most C++ libraries are safe, but the problem is you have to be sure no legacy C library isn’t performing unsafe operations, too.) Using this concept, we can construct the following table:

<table>
<thead>
<tr>
<th>type safe</th>
<th>type unsafe</th>
</tr>
</thead>
<tbody>
<tr>
<td>statically checked</td>
<td>ML, Java</td>
</tr>
<tr>
<td>C, C++</td>
<td>Scheme</td>
</tr>
</tbody>
</table>

The important thing to remember is, due to the Halting Problem, some checks simply can never be performed statically; something must always be deferred to execution time. The trade-off in type design is to minimize the time and space consumed by these objects during execution (and, for that matter, how many guarantees a type system can tractably give a user)—in particular, in shuffling where the set of checked operations lies between static and dynamic checking.

So what is “strong typing”? This appears to be a meaningless phrase, and people often use it in a nonsensical fashion. To some it seems to mean “The language has a type checker”. To others it means “The language is sound” (that is, the type checker and run-time system are related). To most, it seems to just
mean, “A language like Pascal, C or Java, related in a way I can’t quite make precise”. If someone uses this phrase, be sure to ask them to define it for you. (For amusement, watch them squirm.)
Chapter 31

Explicit Polymorphism

31.1 Motivation

Earlier, we looked at examples like the length procedure (from now on, we’ll switch to Scheme with imaginary type annotations):

```scheme
(define lengthNum
  (lambda (l : numlist) : number
    (cond
     [(numEmpty? l) 0]
     [(numCons? l) (add1 (lengthNum (numRest l)))]))
```

If we invoke `lengthNum` on `(list 1 2 3)`, we would get 3 as the response.

Now suppose we apply `lengthNum` to `(list 'a 'b 'c)`. What do we expect as a response? We might expect it to evaluate to 3, but that’s not what we’re going to get! Instead, we are going to get a type error (before invocation can even happen), because we are applying a procedure expecting a numlist to a value of type symlist (a list of symbols).

We can, of course, define another procedure for computing the length of lists of symbols:

```scheme
(define lengthSym
  (lambda (l : symlist) : number
    (cond
     [(symEmpty? l) 0]
     [(symCons? l) (add1 (lengthSym (symRest l)))]))
```

Invoking `lengthSym` on `(list 'a 'b 'c)` will indeed return 3. But look closely at the difference between `lengthNum` and `lengthSym`: what changed in the code? Very little. The changes are almost all in the type annotations, not in the code that executes. This is not really surprising, because there is only one `length` procedure in Scheme, and it operates on all lists, no matter what values they might hold.

This is an unfortunate consequence of the type system we have studied. We introduced types to reduce the number of errors in our program (and for other reasons we’ve discussed, such as documentation), but in the process we’ve actually made it more difficult to write some programs. This is a constant tension in the
design of typed programming languages. Introducing new type mechanisms proscribes certain programs but in return it invalidates some reasonable programs, making them harder to write. The length example is a case in point.

Clearly computing the length of a list is very useful, so we might be tempted to somehow add length as a primitive in the language, and devise special type rules for it so that the type checker doesn’t mind what kind of list is in use. This is a bad idea! There’s a principle of language design that says it’s generally unadvisable for language designers to retain special rights for themselves that they deny programmers who use their language. It’s unadvisable because its condescending and paternalistic. It suggests the language designer somehow “knows better” than the programmer: trust us, we’ll build you just the primitives you need. In fact, programmers tend to always exceed the creative bounds of the language designer. We can already see this in this simple example: Why length and not reverse? Why length and reverse but not append? Why all three and not map? Or filter or foldl and foldr or . . . . Nor is this restricted to lists: what about trees, graphs, and so forth? In short, special cases are a bad idea. Let’s try to do this right.

31.2 Solution

To do this right, we fall back on an old idea: abstraction. The two length functions are nearly the same except for small differences; that means we should be able to parameterize over the differences, define a procedure once, and instantiate the abstraction as often as necessary. Let’s do this one step at a time.

Before we can abstract, we should identify the differences clearly. Here they are, boxed:

```
(define length[Num]
  (lambda (l : [num]list) : number
    (cond
     [([num]Empty? l) 0]
     [([num]Cons? l) (add1 (length[Num] ([num]Rest l)))]))

(define length[Sym]
  (lambda (l : [sym]list) : number
    (cond
     [([sym]Empty? l) 0]
     [([sym]Cons? l) (add1 (length[Sym] ([sym]Rest l)))]))
```

Because we want only one length procedure, we’ll drop the suffixes on the two names. We’ll also abstract over the num and sym by using the parameter τ, which will stand (of course) for a type:

```
(define length
  (lambda (l : τlist) : number
    (cond
     [([τ]Empty? l) 0]
     [([τ]Cons? l) (add1 (length ([τ]Rest l)))]))
```

1It had better: if it didn’t prevent some programs, it wouldn’t catch any errors!
31.2. SOLUTION

It’s cleaner to think of list as a type constructor, analogous to how variants define value constructors: that is, list is a constructor in the type language whose argument is a type. We’ll use an applicative notation for constructors in keeping with the convention in type theory. This avoids the odd “concatenation” style of writing types that our abstraction process has foisted upon us. This change yields

\[
\begin{align*}
\text{(define length} & \\
\quad \text{(lambda} (l : \text{list}(\tau)) : \text{number} & \\
\quad \text{(cond} & \\
\quad \quad [(\text{Empty?} \, l) \, 0] & \\
\quad \quad [(\text{Cons?} \, l) \, (\text{add1} \,(\text{length} \,(\text{Rest} \, l))))] & \\
\text{)}).
\end{align*}
\]

At this point, we’re still using concatenation for the list operators; it seems to make more sense to make those also parameters to Empty and Cons. To keep the syntax less cluttered, we’ll write the type argument as a subscript:

\[
\begin{align*}
\text{(define length} & \\
\quad \text{(lambda} (l : \text{list}(\tau)) : \text{number} & \\
\quad \text{(cond} & \\
\quad \quad [(\text{Empty?} \, \tau \, l) \, 0] & \\
\quad \quad [(\text{Cons?} \, \tau \, l) \, (\text{add1} \,(\text{length} \,(\text{Rest} \, \tau \, l))))] & \\
\text{)}).
\end{align*}
\]

The resulting procedure declaration says that length consumes a list of any type, and returns a single number. For a given type of list, length uses the type-specific empty and non-empty list predicates and rest-of-the-list selector.

All this syntactic manipulation is hiding a great flaw, which is that we haven’t actually defined \(\tau\) anywhere! As of now, \(\tau\) is just a free (type) variable. Without binding it to specific types, we have no way of actually providing different (type) values for \(\tau\) and thereby instantiating different typed versions of length.

Usually, we have a simple procedure for eliminating unbound identifiers, which is to bind them using a procedure. This would suggest that we define length as follows:

\[
\begin{align*}
\text{(define length} & \\
\quad \text{(lambda} (\tau) & \\
\quad \quad \text{(lambda} (l : \text{list}(\tau)) : \text{number} & \\
\quad \quad \text{(cond} & \\
\quad \quad \quad [(\text{Empty?} \, \tau \, l) \, 0] & \\
\quad \quad \quad [(\text{Cons?} \, \tau \, l) \, (\text{add1} \,(\text{length} \,(\text{Rest} \, \tau \, l))))] & \\
\text{)}).
\end{align*}
\]

but this is horribly flawed! To wit:

1. The procedure length now has the wrong form: instead of consuming a list as an argument, it consumes a value that it will bind to \(\tau\), returning a procedure that consumes a list as an argument.

2. The program isn’t even syntactically valid: there is no designation of argument and return type for the procedure that binds \(\tau\).

\[\text{You might wonder why we don’t create a new type, call it type, and use this as the type of the type arguments. This is trickier than it seems: is type also a type? What are the consequences of this?}\]
3. The procedure bound to \textit{length} expects one argument which is a \textit{type}. It seems to violate our separation of the static and dynamic aspects of the program to have types be present (to pass as arguments) during program evaluation!

So on the one hand, this seems like the right sort of idea—to introduce an abstraction—but on the other hand, we clearly can’t do it the way we did above. We’ll have to be smarter.

The last complaint above is actually the most significant, both because it is the most insurmountable and because it points the way to a resolution. There’s a contradiction here: we \textit{want} to have a type parameter, but we \textit{can’t} have the type be a value. So how about we create procedures that bind \textit{types}, and execute these procedures during type checking, not execution time?

As always, name and conquer. We don’t want to use \texttt{lambda} for these type procedures, because \texttt{lambda} already has a well-defined meaning: it creates procedures that evaluate during execution. Instead, we’ll introduce a notion of a type-checking-time procedure, denoted by \texttt{Λ} (capital \(\lambda\)). A \texttt{Λ} procedure takes only types as arguments, and its arguments do not have further type annotations. We’ll use angles rather than parentheses to denote their body. Thus, we might write the \textit{length} function as follows:

\begin{verbatim}
(define length
  <Λ (τ)
    (λ (l : list(τ)) : number
      (cond
       [(Empty? τ l) 0]
       [(Cons? τ l) (add1 (length (Rest τ l)))]))>
)
\end{verbatim}

This is a lot better than the previous code fragment, but it’s still not quite there. The definition of \textit{length} binds it to a type procedure of one argument, which evaluates to a run-time procedure that consumes a list. \textit{Yet} \textit{length} is applied in its own body to a list, not to a type.

To remedy this, we’ll need to \texttt{apply} the type procedure to an argument (type). We’ll again use the angle notation to denote application:

\begin{verbatim}
(define length
  <Λ (τ)
    (λ (l : list(τ)) : number
      (cond
       [(Empty? τ l) 0]
       [(Cons? τ l) (add1 (length<τ> (Rest τ l)))]))>
)
\end{verbatim}

If we’re going to apply \textit{length} to \(τ\), we might as well assume \texttt{Empty?}, \texttt{Cons?} and \texttt{Rest} are also type-procedures, and supply \(τ\) explicitly through type application rather than through the clandestine subscript currently in use:

\begin{verbatim}
(define length
  <Λ (τ)
    (λ (l : list(τ)) : number
      (cond
       [(Empty?<τ> l) 0]
       [(Cons?<τ> l) (add1 (length<τ> (Rest<τ> l)))]))>
)
\end{verbatim}
Thus, an expression like \((\text{Rest}<\tau>l)\) first applies \(\text{Rest}\) to \(\tau\), resulting in an actual \(\text{rest}\) procedure that applies to lists of values of type \(\tau\); this procedure consumes \(l\) as an argument and proceeds as it would in the type-system-free case. In other words, every type-parameterized procedure, such as \(\text{Rest}\) or \(\text{length}\), is a generator of infinitely many procedures that each operate on specific types. The use of the procedure becomes

\[
\begin{align*}
\text{(length}<\text{num}>)(\text{list} 1 2 3)) \\
\text{(length}<\text{sym}>)(\text{list} \text{`a` `b` `c'})
\end{align*}
\]

We call this language \textit{parametrically polymorphic with explicit type parameters}. The term \textit{polymorphism} means “having many forms”; in this case, the polymorphism is induced by the type parameters, where each of our type-parameterized procedures is really a representative of an infinite number of functions that differ only in the type parameter. The “explicitly” comes from the fact that our language forces the programmer to write the \(\Lambda\’s\) and type application.

### 31.3 The Type Language

As a result of these ideas, our type language has grown considerably richer. In particular, we now permit \textit{type variables} as part of the type language. These type variables are introduced by type procedures (\(\Lambda\)), and discharged by type applications. How shall we write such types? We may be tempted to write

\[
\text{length} : \text{type} \rightarrow (\text{list(type)} \rightarrow \text{number})
\]

but this has two problems: first, it doesn’t distinguish between the two kinds of arrows (“type arrows” and “value arrows”, corresponding to \(\Lambda\) and \(\text{lambda}\), respectively), and secondly, it doesn’t really make clear which type is which. Instead, we adopt the following notation:

\[
\text{length} : \forall \alpha. \text{list(\(\alpha\)} \rightarrow \text{number}
\]

where it’s understood that every \(\forall\) parameter is introduced by a type procedure (\(\Lambda\)). Here are the types for a few other well-known polymorphic functions:

\[
\begin{align*}
\text{filter} : \forall \alpha. \text{list}(\alpha) \times (\alpha \rightarrow \text{boolean}) \rightarrow \text{list}(\alpha) \\
\text{map} : \forall \alpha, \beta. \text{list}(\alpha) \times (\alpha \rightarrow \beta) \rightarrow \text{list}(\beta)
\end{align*}
\]

The type of \(\text{map}\), in particular, makes clear why hacks like our initial proposal for the type of \(\text{length}\) don’t scale: when multiple types are involved, we must give each one a name to distinguish between them.

### 31.4 Evaluation Semantics and Efficiency

While we have introduced a convenient \textit{notation}, we haven’t entirely clarified its meaning. In particular, it appears that every type function application actually happens during program execution. This seems extremely undesirable for two reasons:

---

3It’s conventional to use \(\alpha, \beta\) and so on as the canonical names of polymorphic types. This has two reasons. First, we conventionally use \(\tau\) as a \textit{meta-variable}, whereas \(\alpha\) and \(\beta\) are type \textit{variables}. Second, not many people know what Greek letter comes after \(\tau\). . . .
• it’ll slow down the program, in comparison to both the typed but non-polymorphic programs (that we wrote at the beginning of the section) and the non-statically-typed version, which Scheme provides;

• it means the types must exist as values at run-time.

Attractive as it may seem to students who see this for the first time, we really do not want to permit types to be ordinary values. A type is an abstraction of a value; conceptually, therefore, it does not make any sense for the two to live in the same universe. If the types were not supplied until execution, the type checker not be able to detect errors until program execution time, thereby defeating the most important benefit that types confer.

It is therefore clear that the type procedures must accept arguments and evaluate their bodies before the type checker even begins execution. By that time, if all the type applications are over, it suffices to use the type checker built earlier, since what remains is a language with no type variables remaining. We call the phase that performs these type applications the type elaborator.

The problem with any static procedure applications is to ensure they will lead to terminating processes! If they don’t, we can’t even begin the next phase, which is traditional type checking. In the case of using length, the first application (from the procedure use) is on the type num. This in turn inspires a recursive invocation of length also on type num. Because this latter procedure application is no different from the initial invocation, the type expander does not need to perform the application. (Remember, if the language has no side-effects, computations will return the same result every time.)

This informal argument suggests that only one pass over the body is necessary. We can formalize this with the following type judgments:

\[
\Gamma \vdash e : \forall \alpha. \tau \\
\Gamma \vdash e < \tau > : \tau[\alpha \leftarrow \tau']
\]

This judgment says that on encountering a type application, we substitute the quantified type with the type argument replacing the type variable. The program source contains only a fixed number of type applications (even if each of these can execute arbitrarily many times), so the type checker performs this application only once. The corresponding rule for a type abstraction is

\[
\Gamma[\alpha] \vdash e : \tau \\
\Gamma \vdash \Lambda (\alpha) e : \forall \alpha. \tau
\]

This says that we extend \( \Gamma \) with a binding for the type variable \( \alpha \), but leave the associated type unspecified so it is chosen nondeterministically. If the choice of type actually matters, then the program must not type-check.

Observe that the type expander conceptually creates many monomorphically typed procedures, but we don’t really want most of them during execution. Having checked types, it’s fine if the length function that actually runs is essentially the same as Scheme’s length. This is in fact what most evaluators do. The static type system ensures that the program does not violate types, so the program that runs doesn’t need type checks.
Explicit polymorphism seems extremely unwieldy: why would anyone want to program with it? There are two possible reasons. The first is that it’s the only mechanism that the language designer gives for introducing parameterized types, which aid in code reuse. The second is that the language includes some additional machinery so you don’t have to write all the types every time. In fact, C++ introduces a little of both (though much more of the former), so programmers are, in effect, manually programming with explicit polymorphism virtually every time they use the STL (Standard Template Library). But as we’ll see soon, we can do better than deal with all this written overhead.