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1 The Problem
Consider the function

(lambda (x) x)

The type inference engine would infer that this function has type

α→α

(or some other type, modulo renaming the type variable).
Now consider a program of the form (the let construct is similar to the with in our interpreted language):

(let ([id (lambda (x) x)])
(+ (id 5)

(id 6)))

First we need a type judgment for let. Here is a reasonable one: it is exactly what one gets by using the existing rules
for functions and applications, since we have consistently defined with as an application of an immediate function:

Γ`v : τ ′ Γ[x←τ ′]`b : τ

Γ`(let([xv ])b) : τ

Given this judgment, the type variable α in the type inferred for id would unify with the type of 5 (namely,
number) at one application and with the type of 6 (also number) at the other application. Since these are consistent,
the unification algorithm would conclude that id is being used as if it had the type

number→number

in this program.
Now suppose we use id in a context where we apply it to values of different types. The following program is

certainly legal in Scheme:

(let ([id (lambda (x) x)])
(if (id true)

(id 5) ;; then
(id 6))) ;; else

This should be legal even in typed Scheme, because we’re returning the same type of value in both branches of the
conditional. But what happens when we supply this program to our type system? It infers that id has type α→α. But
it then unifies α with the type of each of the arguments. Two of these are the same (number) but the first application
is to a value of type boolean. This forces the type inference algorithm to try and unify number with boolean. Since
these are distinct base types, type inference fails with a type error!

We definitely do not want this program to be declared erroneous. The problem is not with the program itself, but
with the algorithm we employ to infer types. That suggests that we should try to improve the algorithm.
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2 A Solution
What’s the underlying problem in the type algorithm? We infer that id has type α→α; we are then stuck with that type
for every use of id. It must therefore be either number → number or boolean → boolean—but it can’t be both.
That is, we cannot use it in a truly polymorphic manner!

This analysis makes clear that the problem has something to do with type variables and their unification. We arrive
at a contradiction because α must unify with both number and boolean. But what if α didn’t need to do that? What
if we didn’t use the same type variable every time? Then perhaps we could avoid the problem entirely.

One way to get fresh type variables for each application of id is to literally substitute the uses of id with their value.
That is, instead of type checking the program above, suppose we were to check the following program:

(let ([id (lambda (x) x)])
(if ((lambda (x) x) true)

((lambda (x) x) 5)
((lambda (x) x) 6)))

We don’t want to have to write this program, of course, but that’s okay: a simple pre-processor can substitute every
let-bound identifier in the body before type-checking. If we did that, we get a different result from type-checking:

(let ([id (lambda (x) x)])

(if ( 1 (lambda (x) x) true)

( 2 (lambda (x) x) 5)

( 3 (lambda (x) x) 6)))

Each use of id results in a different type; for instance, the id procedure at 1 might have type α→α, 2 might have
type β→β and 3 might have γ→γ. Then α could unify with type boolean, β with type number and γ with type
number. Because these are distinct type variables, they need not unify with one another. Each application would
succeed, and the entire program would successfully pass the type checker. This in fact corresponds more accurately
with what happens during execution, because on the first invocation the identifier x in id holds a value of boolean type,
and on the subsequent invocation (in the first branch of the conditional, in this case) it holds a number. The separate
type variables accurately reflect this behavior.

3 A Better Solution
The solution we’ve presented above has two problems:

1. It can lead to considerable code size explosion. For instance, consider this program:

(let ([x
(let ([y

(let ([z 3])
(+ z z))])

(+ y y))])
(+ x x))

Expand it in full. In general, how big can a program grow upon expansion?

2. Since let does not permit recursion, consider letrec or local, the Scheme analog of rec. What happens if we
substitute code in a recursive definition?

In short, the code substitution solution is not workable, but it does contain the germ of a good idea. We see that what
it does is generate fresh type variables at every use: this is the essence of the solution. So perhaps we can preserve the
essence while dispensing with that particular implementation.

Indeed, we can build further on the intuition we have developed. A closure has only one name for an identifier, but
a closure can be used multiple times, even recursively, without confusion. This is because, in effect, each application
consistently renames the bound identifier(s) so they cannot be confused across instances. Working backwards, since
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we want fresh identifiers that cannot be confused across instances, we want to create a kind of type closure that we
instantiate at every use of a polymorphic function.

We will therefore use a modified rule for typing let:

Γ`v : τ ′ Γ[x←CLOSE(τ ′)]`b : τ

Γ`(let([xv ])b) : τ

That is, we bind x to a “closed” type when we check the body. The idea is, whenever we encounter this special type
in the body, we instantiate its type variables with fresh type variables:

Γ`e : CLOSE(τ ′)

Γ`e : τ

where τ is the same as τ ′, except all type variables have been renamed consistently to unused type variables.
Returning to the identity procedure, the type inference algorithm binds id to the type CLOSE(α→α). At each use

of id, the type checker renames the type variables, generating types such as α1→α1, α2→α2, and so on. As we have
seen before, these types permit the body to successfully type check. Therefore, we have successfully captured the
intuition behind code-copying without the difficulties associated with it.

4 Recursion
We have provided a rule for let above, but in fact a similar rule can apply to letrec also. There are some subtleties
that we must defer to a more advanced setting, but safe uses of letrec (namely, those where the right-hand side is
syntactically a procedure) can safely employ the type closure mechanism described above to infer polymorphic types.1

5 A Significant Subtlety
Alas something is still rotten in the state of inferring polymorphic types. When we rename all type variables in a
CLOSE type, we may rename variables that were not bound in the let or letrec expression: for instance,

(lambda (y)
(let ([f (lambda (x) y)])

(if (f true)
(+ (f true) 5)
6)))

Our algorithm would infer the type CLOSE(α→β) (or the equivalent under renaming) for f . (Because x and y are not
linked in the body, the inference process assigns them potentially different types; hence the presence of both α and β

in the type.)
At the first application, in the test of the conditional, we generate fresh type names, α1 and β1. The type α1 unifies

with boolean, and β1 unifies with boolean (since it’s used in a conditional context). At the second application, the
algorithm generates two fresh names, α2 and β2. α2 will unify with boolean (since that is the type of the argument to
f ), while β2 unifies with number, because the entire expression is the first argument to addition. Reasoning thus, we
can see that the program successfully passes the type checker.

But this program should fail! Simply looking at it, it’s obvious that f can return either a boolean or a numeric
value, but not both. Indeed, if we apply the entire expression to true, there will be a type error at the addition; if we
apply it to 42, the type error will occur at the conditional. Sure enough, in our type system prior to today, it would
have failed with an error while unifying the constraints on the return types of f . So how did it slip through?

The program successfully passed the type checker because of our use of type closures. We did not, however,
correctly apply our intuition about closures. When we apply a closure, we only get new identifiers for those bound
by the closures—not those in its lexical scope. The variables in the closure’s lexical scope are shared between all
applications of the closure. So should it be in the case of type closures. We should only generate fresh type variables
for the types introduced by the let or letrec.

1In particular, we are no longer using code-copying, which encounters an obvious difficulty in the presence of recursion.
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Concretely, we must modify our rule for let (and correspondingly that for letrec) so the type closures track which
identifiers must be renamed:

Γ`v : τ ′ Γ[x←CLOSE(τ ′, Γ)]`b : τ

Γ`(let([xv ])b) : τ

That is, a type closure tracks the environment of closure creation. Correspondingly,

Γ`e : CLOSE(τ ′, Γ′)

Γ`e : τ

where τ is the same as τ ′, except the renaming applies only to type variables in τ ′ that are not bound by Γ′.
Applying these rules to the example above, we rename the α’s but not β, so the first use of f gets type α1→β and

the second use α2→β. This forces β = number = boolean, which results in a type error during unification.

6 Why Let and not Lambda?
The kind of polymorphism we have seen above is called let-based polymorphism, in honor of the ML programming
language, which introduced this concept. Note that let in ML is recursive (so it corresponds to Scheme’s letrec or
local, and the rec we have studied in this class). In particular, ML treats let as a primitive construct, rather than
expanding it into an immediate function application as Scheme does (and as we did with with in our interpreters).

The natural question is to wonder why we would have a rule that makes let-bound identifiers polymorphic, but
not admit the same polymorphic power for lambda-bound identifiers. The reason goes back to our initial approach
to polymorphism, which was to substitute the body for the identifier. When we have access to the body, we can
successfully perform this substitution, and check for the absence of errors. (Later we saw how type closures achieve
the same effect while offering several advantages, but the principle remains the same.)

The last example above shows the danger in generalizing the type of lambda-bound identifiers: without knowing
what they will actually receive as a value (which we cannot know until run-time), we cannot be sure that they are in fact
polymorphic. Because we have to decide at type-checking time whether or not to treat an identifier polymorphically,
we are forced to treat them monomorphically, and extend the privilege of polymorphism only to let-bound identifiers.
Knowing exactly which value will be substituted turns out to be a gigantic advantage for the type system!

7 The Structure of ML Programs
While our type inference algorithm inferred types with type variables, we could not actually exploit this power directly.
We could use such a value several times in the same type contexts, and the same expression elsewhere several times
in a different type context, but not combine the two copies of the code through a binding. Let-based polymorphism
earned us this power of abstraction.

Let-based polymorphism depends fundamentally on having access to the bound value when checking the scope of
the binding. As a result, an ML program is typically written as a series of let expressions; the ML evaluator interprets
this as a sequence of nested lets. It treats the initial environment similarly as one long sequence of lets, so for instance,
if a programmer uses map in a top-level expression, the evaluator effectively puts the use of map in the body of the
definition of map. Therefore, the uses of map benefit from the polymorphic nature of that function.

Puzzle What is the complexity of the polymorphic type inference algorithm that uses type closures?

8 Interaction with Effects
Suppose we add polymorphically-typed boxes to the language:

box : α→ ref (α)
unbox : ref (α)→ α

set-box! : ref (α) α→ ref (α)
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(We’re assuming here that set-box! returns the box as its result.) On their own, they look harmless.
Now consider the following program:

(let ([f (box (lambda (x) x))])
(begin

(set-box! f (lambda (y) (+ y 5)))
((unbox f ) true)))

When run, this program will yield a run-time error because y is bound to the value true, then used in an addition. A
sound type system should, therefore, flag this program as erroneous.

In fact, however, this program type checks without yielding an error. Notice that f has the closed type ref (α→ α)
in the empty type environment. This type is renamed at each use, which means the function applied to true has type
(say) α2 → α2, even though the value in the box has been re-bound to number→ number. In fact, this bug resulting
from the unexpected interaction between state and polymorphism lay dormant in ML for many years, and this brief
program could crash the system.

What has happened here is that we’ve destoyed the semantics of boxes. The whole point of introducing the box is
to introduce sharing; the implementation of the type system has, however, lost that very sharing.

One solution to this problem would be to prohibit the use of boxes on the right-hand side of let (and letrec)
expressions, or at least not polymorphically generalize them. The problem is actually more general, however: any
potential effect (such as mutation, continuation capture, and so on) runs into similar problems. Studies of large bodies
of ML code have shown that programmers don’t in fact need the power of polymorphic generalization for these effects.
Therefore, rather than create a vastly more complicated type system, a simple, practical solution is to simply prohibit
such effects in locations that the type system will automatically treat as polymorphic.
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