CSCI-1680
Wireless

Rodrigo Fonseca

Based partly on lecture notes by Scott Shenker and John Jannotti
Wireless

• **Today: wireless networking truly ubiquitous**
 – 802.11, 3G, (4G), WiMAX, Bluetooth, RFID, …
 – Sensor networks, Internet of Things
 – Some new computers have no *wired* networking
 – 4B cellphone subscribers vs. 1B computers

• **What’s behind the scenes?**
Wireless is different

- Signals sent by the sender don’t always reach the receiver intact
 - Varies with space: attenuation, multipath
 - Varies with time: conditions change, interference, mobility
- Distributed: sender doesn’t know what happens at receiver
- Wireless medium is inherently shared
 - No easy way out with switches
Implications

• Different mechanisms needed
• Physical layer
 – Different knobs: antennas, transmission power, encodings
• Link Layer
 – Distributed medium access protocols
 – Topology awareness
• Network, Transport Layers
 – Routing, forwarding
• Most advances do not abstract away the physical and link layers
Physical Layer

- **Specifies physical medium**
 - Ethernet: Category 5 cable, 8 wires, twisted pair, R45 jack
 - WiFi wireless: 2.4GHz

- **Specifies the signal**
 - 100BASE-TX: NRZI + MLT-3 encoding
 - 802.11b: binary and quadrature phase shift keying (BPSK/QPSK)

- **Specifies the bits**
 - 100BASE-TX: 4B5B encoding
 - 802.11b @ 1-2Mbps: Barker code (1bit -> 11chips)
What can happen to signals?

• **Attenuation**

 – Signal power attenuates by $\sim r^2$ factor for omni-directional antennas in free-space

 – Exponent depends on type and placement of antennas

 • < 2 for directional antennas

 • > 2 if antennas are close to the ground
Interference

• **External sources**
 – E.g., 2.4GHz unlicensed ISM band
 – 802.11
 – 802.15.4 (ZigBee), 802.15.1 (Bluetooth)
 – 2.4GHz phones
 – Microwave ovens

• **Internal sources**
 – Nodes in the same network/protocol can (and do) interfere

• **Multipath**
 – Self-interference (destructive)
Multipath

- May cause attenuation, destructive interference
Signal (+ Interference) to Noise Ratio

• Remember Shannon?

 • Shannon-Hartley
 \[C = 2B \log_2(M) \text{ bits/sec} \quad (1) \]

• But noise ruins your party
 \[C = B \log_2(1 + \frac{S}{N}) \text{ bits/sec} \quad (2) \]
 \[(1) \leq (2) \Rightarrow M \leq \sqrt{1 + \frac{S}{N}} \]

• Noise limits your ability to distinguish levels
 – For a fixed modulation, increases Bit Error Rate (BER)

• Could make signal stronger
 – Uses more energy
 – Increases interference to other nodes
Wireless Modulation/Encoding

• More complex than wired

• Modulation, Encoding, Frequency
 – Frequency: number of symbols per second
 – Modulation: number of chips per symbol
 • E.g., different phase, frequency, amplitude
 – Encoding: number of chips per bit (to counter errors)

• Example
 – 802.11b, 1Msp: 11Mcps, DBPSK, Barker Code
 • 1 chip per symbol, 11 chips/bit
 – 802.11b, 2Msp: 11Mcps, DQPSK, Barker Code
 • 2 chips per symbol, 11 chips/bit
Link Layer

• **Medium Access Control**
 – Should give 100% if one user
 – Should be efficient and fair if more users
• **Ethernet uses CSMA/CD**
 – Can we use CD here?
• **No! Collision happens at the receiver**
• **Protocols try to avoid collision in the first place**
Hidden Terminals

- A can hear B and C
- B and C can’t hear each other
- They both interfere at A
- B is a *hidden terminal* to C, and vice-versa
- Carrier sense at sender is useless
Exposed Terminals

- A transmits to B
- C hears the transmission, backs off, even though D would hear C
- C is an exposed terminal to A’s transmission
- Why is it still useful for C to do CS?
Key points

• No global view of collision
 – Different receivers hear different senders
 – Different senders reach different receivers

• Collisions happen at the receiver

• Goals of a MAC protocol
 – Detect if receiver can hear sender
 – Tell senders who might interfere with receiver to shut up
Simple MAC: CSMA/CA

- Maintain a waiting counter c
- For each time channel is free, $c--$
- Transmit when $c = 0$
- When a collision is inferred, retransmit with exponential backoff
 - Use lack of ACK from receiver to infer collision
 - Collisions are expensive: only full packet transmissions
- How would we get ACKs if we didn’t do carrier sense?
RTS/CTS

- **Idea:** transmitter can check availability of channel at receiver
- **Before every transmission**
 - Sender sends an RTS (Request-to-Send)
 - Contains length of data (in time units)
 - Receiver sends a CTS (Clear-to-Send)
 - Sender sends data
 - Receiver sends ACK after transmission
- **If you don’t hear a CTS, assume collision**
- **If you hear a CTS for someone else, shut up**
RTS/CTS

Diagram showing nodes B, A, and C with an RTS signal from B to A.
RTS/CTS
RTS/CTS

B → A

Data

C
Benefits of RTS/CTS

• Solves hidden terminal problem
• Does it?
 – Control frames can still collide
 – E.g., can cause CTS to be lost
 – In practice: reduces hidden terminal problem on data packets
Drawbacks of RTS/CTS

- Overhead is too large for small packets
 - 3 packets per packet: RTS/CTS/Data (4-22% for 802.11b)
- RTS still goes through CSMA: can be lost
- CTS loss causes lengthy retries
- 33% of IP packets are TCP ACKs
- In practice, WiFi doesn’t use RTS/CTS
Other MAC Strategies

• **Time Division Multiplexing (TDMA)**
 – Central controller allocates a time slot for each sender
 – May be inefficient when not everyone sending

• **Frequency Division**
 – Multiplexing two networks on same space
 – Nodes with two radios (think graph coloring)
 – Different frequency for upload and download
Network Layer

• What about the network topology?
• Almost everything you use is *single hop*!
 – 802.11 in infrastructure mode
 – Bluetooth
 – Cellular networks
 – WiMax (Some 4G networks)

• Why?
 – Really hard to make multihop wireless efficient
WiFi Distribution System

• **802.11 typically works in infrastructure mode**
 – Access points – fixed nodes on wired network

• **Distribution system connects Aps**
 – Typically connect to the same Ethernet, use learning bridge to route to nodes’ MAC addresses

• **Association**
 – Node negotiates with AP to get access
 – Security negotiated as well (WEP, WPA, etc)
 – Passive or active
Wireless Multi-Hop Networks

- Some networks are multihop, though!
 - Ad-hoc networks for emergency areas
 - Vehicular Networks
 - Sensor Networks
 - E.g., infrastructure monitoring
 - Multihop networking to share Internet access
 - E.g. Meraki
Many Challenges

• **Routing**
 – Link estimation

• **Multihop throughput dropoff**
The Routing Problem

- Find a route from S to D
- Topology can be very dynamic
Routing

• Routing in ad-hoc networks has had a lot of research
 – General problem: any-to-any routing
 – Simplified versions: any-to-one (base station), one-to-any (dissemination)

• DV too brittle: inconsistencies can cause loops

• DSDV
 – Destination Sequenced Distance Vector
DSDV

• Charles Perkins (1994)
• Avoid loops by using sequence numbers
 – Each destination increments own sequence number
 • Only use EVEN numbers
 – A node selects a new parent if
 • Newer sequence number or
 • Same sequence number and *better* route
 – If disconnected, a node increments destination sequence number to next ODD number!
 – No loops (only transient loops)
 – Slow: on some changes, need to wait for root
Many Others

- DSR, AODV: on-demand
- Geographic routing: use nodes’ physical location and do greedy routing
- Virtual coordinates: derive coordinates from topology, use greedy routing
- Tree-based routing with on-demand shortcuts
- ...
Routing Metrics

• How to choose between routes?
• Hopcount is a poor metric!
 – Paths with few hops may use long, marginal links
 – Must find a balance
• All links do local retransmissions
• Idea: use expected transmissions over a link as its cost!
 – ETX = 1/(PRR) (Packet Reception Rate)
 – Variation: ETT, takes data rate into account
Multihop Throughput

• Only every third node can transmit!
 – Assuming a node can talk to its immediate neighbors
 – (1) Nodes can’t send and receive at the same time
 – (2) Third hop transmission prevents second hop from receiving
 – (3) Worse if you are doing link-local ACKs

• In TCP, problem is worse as data and ACK packets contend for the channel!

• Not to mention multiple crossing flows!
Sometimes you can’t (or shouldn’t) hide that you are on wireless!

• Three examples of relaxing the layering abstraction
Examples of Breaking Abstractions

• TCP over wireless
 – Packet losses have a strong impact on TCP performance
 – Snoop TCP: hide retransmissions from TCP end-points
 – Distinguish congestion from wireless losses
4B Link Estimator

- Uses information from Physical, Routing, and Forwarding layers to help estimate link quality

1.5
2
2.5
3

Average Cost (xmits/packet)

1.5
2
2.5
3

Average Tree Depth (hops)

4B
CTP + white bit
CTP + unidir
CTP T2
MultiHopLQI
Cost = Depth

45%

Directly measuring ETX with the data path reduces path costs by 45%. This requires a routing protocol can adapt to such rapid edge cost changes.
Stanford’s Full Duplex Wireless

• Status quo: nodes can’t transmit and receive at the same time
 – Why? TX energy much stronger than RX energy

• Key insight:

• With other tricks, 92% of optimal bandwidth
Summary

• Wireless presents many challenges
 – Across all layers
 – Encoding/Modulation (we’re doing pretty well here)
 – Distributed multiple access problem
 – Multihop

• Most current protocols sufficient, given over provisioning *(good enough syndrome)*

• Other challenges
 – Smooth handoff between technologies (3G, Wifi, 4G…)
 – Low-cost, long range wireless for developing regions
 – Energy usage
Next Time

- Rodrigo out of town (last time!): Stephen will present
- Network programming
 - Some techniques for high performance servers
 - Going beyond sockets: a few network programming frameworks
 - Virtual Interfaces (tun/tap)