CSCI-1680
Switching

Rodrigo Fonseca

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti
Administrivia

- Homework I out, due next Friday, Feb 18
- No class next Tuesday
Today

- Ethernet (cont.)
- Link Layer Switching
Basic Problem

- Direct-link networks don’t scale

- Solution: use *switches* to connect network segments
Switching

- Switches must be able to, given a packet, determine the outgoing port
- 3 ways to do this:
 - Datagram Switching
 - Virtual Circuit Switching
 - Source Routing
Virtual Circuit Switching

- **Explicit set-up and tear down phases**
 - Establishes Virtual Circuit Identifier on each link
 - Each switch stores VC table
- **Subsequent packets follow same path**
 - Switches map [in-port, in-VCI] : [out-port, out-VCI]
- **Also called connection-oriented model**
Virtual Circuit Model

• Requires one RTT before sending first packet
• Connection request contain full destination address, subsequent packets only small VCI
• Setup phase allows reservation of resources, such as bandwidth or buffer-space
 – Any problems here?
• If a link or switch fails, must re-establish whole circuit
• Example: ATM
Datagram Switching

- Each packet carries destination address
- Switches maintain address-based tables
 - Maps [destination address]:[out-port]
- Also called connectionless model
Datagram Switching

- No delay for connection setup
- Source can’t know if network can deliver a packet
- Possible to route around failures
- Higher overhead per-packet
- Potentially larger tables at switches
• Packets carry entire route: ports
• Switches need no tables!
 – But end hosts must obtain the path information
• Variable packet header
Bridges and Extended LANs

• **LANs have limitations**
 – E.g. Ethernet < 1024 hosts, < 2500m

• **Connect two or more LANs with a bridge**
 – Operates on Ethernet addresses
 – Forwards packets from one LAN to the other(s)

• **Ethernet switch is just a multi-way bridge**
Learning Bridges

• **Idea:** don’t forward a packet where it isn’t needed
 – If you know recipient is not on that port

• **Learn hosts’ locations based on source addresses**
 – Build a table as you receive packets

• **Table says when not to forward a packet**
 – Doesn’t need to be complete for correctness
Bridges

- **Unicast**: forward with restrictions
- **Broadcast**: always forward
- **Multicast**: always forward or learn groups
- **Difference between bridges and repeaters?**
 - Bridges: same broadcast domain; copy frames
 - Repeaters: same broadcast and collision domain; copy signals
Dealing with Loops

• **Problem: people may create loops in LAN!**
 – Accidentally, or to provide redundancy
 – Don’t want to forward packets indefinitely
• Need to disable ports, so that no loops in network
• Like creating a spanning tree in a graph
 – View switches and networks as nodes, ports as edges
Distributed Spanning Tree Algorithm

• Every bridge has a unique ID (Ethernet address)
• Goal:
 – Bridge with the smallest ID is the root
 – Each segment has one designated bridge, responsible for forwarding its packets towards the root
 – Bridge closest to root is designated bridge
 – If there is a tie, bridge with lowest ID wins
Spanning Tree Protocol

• **Spanning Tree messages contain:**
 – ID of bridge sending the message
 – ID sender believes to be the root
 – Distance (in hops) from sender to root

• **Bridges remember best config msg on each port**

• **Send message when you think you are the root**

• **Otherwise, forward messages from best known root**
 – Add one to distance before forwarding
 – Don’t forward if you know you aren’t dedicated bridge

• **In the end, only root is generating messages**
Limitations of Bridges

• Scaling
 – Spanning tree algorithm doesn’t scale
 – Broadcast does not scale
 – No way to route around congested links, even if path exists

• May violate assumptions
 – Could confuse some applications that assume single segment
 – Much more likely to drop packets
 – Makes latency between nodes non-uniform
 – Beware of transparency
- Company network, A and B departments
 - Broadcast traffic does not scale
 - May not want traffic between the two departments
 - Topology has to mirror physical locations
 - What if employees move between offices?
- **Solution: Virtual LANs**
 - Assign switch ports to a VLAN ID (color)
 - Isolate traffic: only same color
 - Trunk links may belong to multiple VLANs
 - Encapsulate packets: add 12-bit VLAN ID

- **Easy to change, no need to rewire**
• **Goal:** deliver packets from input to output ports

• **Three potential performance concerns:**
 – Throughput in bytes/second
 – Throughput in packets/second
 – Latency
Cut through vs. Store and Forward

- **Two approaches to forwarding a packet**
 - Receive a full packet, then send to output port
 - Start retransmitting as soon as you know output port, before full packet

- **Cut-through routing can greatly decrease latency**

- **Disadvantage**
 - Can waste transmission (classic *optimistic* approach)
 - CRC may be bad
 - If Ethernet collision, may have to send runt packet on output link
Buffering

- Buffering of packets can happen at input ports, fabric, and/or output ports
- Queuing discipline is very important
- Consider FIFO + input port buffering
 - Only one packet per output port at any time
 - If multiple packets arrive for port 2, they may block packets to other ports that are free
 - *Head-of-line blocking*
Shared Memory Switch

- **1st Generation** – like a regular PC
 - NIC DMAs packet to memory over I/O bus
 - CPU examines header, sends to destination NIC
 - I/O bus is serious bottleneck
 - For small packets, CPU may be limited too
 - Typically < 0.5 Gbps
Shared Bus Switch

- **2nd Generation**
 - NIC has own processor, cache of forwarding table
 - Shared bus, doesn’t have to go to main memory
 - Typically limited to bus bandwidth
 - (Cisco 5600 has a 32Gbps bus)
Point to Point Switch

• 3^{rd} Generation: overcomes single-bus bottleneck
• Example: Cross-bar switch
 – Any input-output permutation
 – Multiple inputs to same output requires trickery
 – Cisco 12000 series: 60Gbps
Coming Up

• Let’s connect multiple networks: IP and the Network Layer
• Remember: no class on Tuesday!