CSCI-1680
Link Layer

Rodrigo Fonseca

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti
Administrivia

• Where are the policy forms?
• Snowcast due on Friday
• Homework I out on Thursday
• GitHub
 – brown-csci1680 organization
 – Private repositories for each group
Today

• Previously...
 – Physical Layer
 • Encoding
 • Modulation
 – Link Layer
 • Framing

• Link Layer
 – Error Detection
 – Reliability
 – Media Access
 – Ethernet
 – Token Ring
Error Detection

• Idea: add redundant information to catch errors in packet
• Used in multiple layers
• Three examples:
 – Parity
 – Internet Checksum
 – CRC
Simplest Schemes

• **Repeat frame**
 – High overhead
 – Can’t correct error

• **Parity**
 – Can detect odd number of bit errors
 – No correction
2-D Parity

- Add 1 parity bit for each 7 bits
- Add 1 parity bit for each bit position across the frame
 - Can correct single-bit errors
 - Can detect 2- and 3-bit errors, most 4-bit errors
IP Checksum

• Fixed-length code
 – n-bit code should capture all but 2^{-n} fraction of errors
 – But want to make sure that includes all common errors

• Example: IP Checksum

u_short
cksum (u_short *buf, int count)
{
 u_long sum = 0;
 while (count--)
 if ((sum += *buf) & 0xffff) /* carry */
 sum = (sum & 0xffff) + 1;
 return ~(sum & 0xffff);
}
How good is it?

• 16 bits not very long: misses 1/64K errors
• Checksum does catch any 1-bit error
• But not any 2-bit error
 – E.g., increment word ending in 0, decrement one ending in 1
• Checksum also optional in UDP
 – All 0s means no checksums calculated
 – If checksum word gets wiped to 0 as part of error, bad news
CRC – Error Detection with Polynomials

• Consider message to be a polynomial in $Z_2[x]$
 – Each bit is one coefficient
 – E.g., message 10101001 \rightarrow $m(x) = x^7 + x^5 + x^3 + 1$

• Can reduce one polynomial modulo another
 – Let $n(x) = m(x)x^3$. Let $C(x) = x^3 + x^2 + 1$
 – Find $q(x)$ and $r(x)$ s.t. $n(x) = q(x)C(x) + r(x)$ and degree of $r(x) <$ degree of $C(x)$
 – Analogous to taking 11 mod 5 = 1
Polynomial Division Example

- Just long division, but addition/subtraction is XOR

```
  11111001
------------------
  1101 ) 10011010000
        1101
        ---
        1110
        1101
        ---
        1101
        1101
        ---
        1000
        1101
        ---
        0111
        1101
        ---
        1101
        1101
        ---
        1100
        1101
        ---
        1011
        1101
        ---
        1000
        1101
        ---
        101

Generator  1101  Message
```

Remainder 101
CRC

• **Select a divisor polynomial** $C(x)$, **degree** k

 – $C(x)$ should be *irreducible* – not expressible as a product of two lower-degree polynomials in $\mathbb{Z}_2[x]$

• **Add k bits to message**

 – Let $n(x) = m(x)x^k$ (add k 0’s to m)

 – Compute $r(x) = n(x) \mod C(x)$

 – Compute $n(x) = n(x) – r(x)$ (will be divisible by $C(x)$)
 (subtraction is XOR, just set k lowest bits to $r(x)$!)

• **Checking CRC is easy**

 – Reduce message by $C(x)$, make sure remainder is 0
Why is this good?

• Suppose you send \(m(x) \), recipient gets \(m'(x) \)
 – \(E(x) = m'(x) - m(x) \) (all the incorrect bits)
 – If CRC passes, \(C(x) \) divides \(m'(x) \)
 – Therefore, \(C(x) \) must divide \(E(x) \)

• Choose \(C(x) \) that doesn’t divide any common errors!
 – All single-bit errors caught if \(x^k, x^0 \) coefficients in \(C(x) \) are 1
 – All 2-bit errors caught if at least 3 terms in \(C(x) \)
 – Any odd number of errors if last two terms \((x + 1)\)
 – Any error burst less than length \(k \) caught
Common CRC Polynomials

- CRC-8: $x^8 + x^2 + x^1 + 1$
- CRC-16: $x^{16} + x^{15} + x^2 + x^1$
- CRC-32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$
- CRC easily computable in hardware
Reliable Delivery

- Error detection can discard bad packets
- Problem: if bad packets are lost, how can we ensure reliable delivery?
 - Exactly-once semantics = at least once + at most once
At Least Once Semantics

• How can the sender know packet arrived *at least once*?
 – Acknowledgments + Timeout

• Stop and Wait Protocol
 – S: Send packet, wait
 – R: Receive packet, send ACK
 – S: Receive ACK, send next packet
 – S: No ACK, timeout and retransmit
Stop and Wait Problems

- Duplicate data
- Duplicate acks
- Can’t fill pipe (remember bandwidth-delay product)
- Difficult to set the timeout value
At Most Once Semantics

• How to avoid duplicates?
 – Uniquely identify each packet
 – Have receiver and sender remember

• Stop and Wait: add 1 bit to the header
 – Why is it enough?
Frame 0
ACK 0
Frame 1
ACK 1
Frame 0
ACK 0
...

Sender

Receiver

Time
Sliding Window Protocol

- Still have the problem of keeping pipe full
 - Generalize approach with > 1-bit counter
 - Allow multiple outstanding (unACKed) frames
 - Upper bound on unACKed frames, called window
Sliding Window Sender

- Assign sequence number (SeqNum) to each frame
- Maintain three state variables
 - send window size (SWS)
 - last acknowledgment received (LAR)
 - last frame send (LFS)

- Maintain invariant: LFS – LAR ≤ SWS
- Advance LAR when ACK arrives
- Buffer up to SWS frames
Sliding Window Receiver

- Maintain three state variables:
 - receive window size (RWS)
 - largest acceptable frame (LAF)
 - last frame received (LFR)

- Maintain invariant: LAF – LFR ≤ RWS

- Frame SeqNum arrives:
 - if LFR < SeqNum ≤ LAF, accept
 - if SeqNum ≤ LFR or SeqNum > LAF, discard

- Send cumulative ACKs
Tuning SW

• How big should SWS be?
 – “Fill the pipe”

• How big should RWS be?
 – $1 \leq RWS \leq SWS$

• How many distinct sequence numbers needed?
 – If $RWS = 1$, need at least $SWS+1$
 – If $RWS = SWS$, $SWS < (\text{#seqs} + 1)/2$
Case Study: Ethernet (802.3)

• Dominant wired LAN technology
 – 10BASE2, 10BASE5 (Vampire Taps)
 – 10BASET, 100BASE-TX, 1000BASE-T, 10GBASE-T,…

• Both Physical and Link Layer specification

• CSMA/CD
 – Carrier Sense / Multiple Access / Collision Detection

• Frame Format (Manchester Encoding):

```
+----+----+----+----+----+----+----+
| 64 | 48 | 48 | 16 | 32 |
+----+----+----+----+----+
| Preamble | Dest addr | Src addr | Type | Body | CRC |
+----+----+----+----+----+----+
```
Ethernet Addressing

- Globally unique, 48-bit unicast address per adapter
 - Example: 00:1c:43:00:3d:09 (Samsung adapter)
 - 24 msb: organization
- Broadcast address: all 1s
- Multicast address: first bit 1
- Adapter can work in promiscuous mode
Media Access Control

• Control access to shared physical medium
 – E.g., who can talk when?
 – If everyone talks at once, no one hears anything
 – Job of the Link Layer

• Two conflicting goals
 – Maximize utilization when one node sending
 – Approach 1/N allocation when N nodes sending
Different Approaches

• **Partitioned Access**
 – Time Division Multiple Access (TDMA)
 – Frequency Division Multiple Access (FDMA)
 – Code Division Multiple Access (CDMA)

• **Random Access**
 – ALOHA/ Slotted ALOHA
 – Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
 – Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
 – RTS/CTS (Request to Send/Clear to Send)
 – Token-based
Ethernet MAC

- **Problem: shared medium**
 - 10Mbps: 2500m, with 4 repeaters at 500m
- **Transmit algorithm**
 - If line is idle, transmit immediately
 - Upper bound message size of 1500 bytes
 - Must wait 9.6μs between back to back frames
 - If line is busy: wait until idle and transmit immediately
Handling Collisions

• **Collision detection (10Base2 Ethernet)**
 – Uses Manchester encoding
 – Constant average voltage unless multiple transmitters

• **If collision**
 – Jam for 32 bits, then stop transmitting frame

• **Collision detection constrains protocol**
 – Imposes min. packet size (64 bytes or 512 bits)
 – Imposes maximum network diameter (2500m)
 – Ensure transmission time $\geq 2x$ propagation delay (why?)
Collision Detection

- Without minimum frame length, might not detect collision

Violating Timing Constraints

No Collision Detect!

Collision Detect
When to transmit again?

- Delay and try again: exponential backoff
- *nth time*: $k \times 51.2\mu s$, for $k = U\{0..2^{\min(n,10)}-1\}$
 - 1st time: 0 or 51.2\mu s
 - 2nd time: 0, 51.2, 102.4, or 153.6\mu s
- Give up after several times (usually 16)
Capture Effect

• Exponential backoff leads to self-adaptive use of channel

• A and B are trying to transmit, and collide

• Both will back off either 0 or 51.2 μs

• Say A wins.

• Next time, collide again.
 – A will wait between 0 or 1 slots
 – B will wait between 0, 1, 2, or 3 slots

• …
Token Ring

- Idea: frames flow around ring
- Capture special “token” bit pattern to transmit
- Variation used today in Metropolitan Area Networks, with fiber
Interface Cards

• **Problem:** if host dies, can break the network
• **Hardware typically has relays**
Token Ring Frames

- **Frame format (Differential Manchester)**

<table>
<thead>
<tr>
<th>Start delimiter</th>
<th>Access control</th>
<th>Frame control</th>
<th>Dest addr</th>
<th>Src addr</th>
<th>Body</th>
<th>Checksum</th>
<th>End delimiter</th>
<th>Frame status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>48</td>
<td>48</td>
<td>32</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- **Sender grabs token, sends message(s)**
- **Recipient checks address**
- **Sender removes frame from ring after lap**
- **Maximum holding time: avoid capture**
- **Monitor node reestablishes lost token**
Coming Up

• Link Layer Switching