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Last Time

• Flow Control
• Congestion Control



Today

• More TCP Fun!
• Congestion Control Continued

– Quick Review
– RTT Estimation

• TCP Friendliness
– Equation Based Rate Control

• TCP on Lossy Links
• Congestion Control versus Avoidance

– Getting help from the network
• Cheating TCP



Quick Review

• Flow Control:
– Receiver sets Advertised Window

• Congestion Control
– Two states: Slow Start (SS) and Congestion Avoidance 

(CA)
– A window size threshold governs the state transition

• Window <= ssthresh: SS
• Window > ssthresh: Congestion Avoidance

– States differ in how they respond to ACKs
• Slow start: +1 w per RTT (Exponential increase)
• Congestion Avoidance: +1 MSS per RTT (Additive increase)

– On loss event: set ssthresh = w/2, w = 1, slow start
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States differ in how they respond to acks

• Slow start: double w in one RTT
– There are w/MSS segments (and acks) per RTT
– Increase w per RTT à how much to increase per 

ack?
• w / (w/MSS) = MSS

• AIMD: Add 1 MSS per RTT
– MSS/(w/MSS) = MSS2/w per received ACK



Putting it all together
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Fast Recovery and Fast Retransmit
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TCP Friendliness

• Can other protocols co-exist with TCP?
– E.g., if you want to write a video streaming app using 

UDP, how to do congestion control?
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TCP Friendliness

• Can other protocols co-exist with TCP?
– E.g., if you want to write a video streaming app using 

UDP, how to do congestion control?
• Equation-based Congestion Control

– Instead of implementing TCP’s CC, estimate the rate 
at which TCP would send. Function of what?

– RTT, MSS, Loss
• Measure RTT, Loss, send at that rate!



TCP Throughput

• Assume a TCP congestion of window W (segments), 
round-trip time of RTT, segment size MSS
– Sending Rate S = W x MSS / RTT (1)

• Drop: W = W/2
– grows by MSS for W/2 RTTs, until another drop at W ≈ W

• Average window then 0.75xS
– From (1), S = 0.75 W MSS / RTT (2)

• Loss rate is 1 in number of packets between losses:
– Loss = 1 / ( 1 + (W/2 + W/2+1 + W/2 + 2  + … + W)

= 1 / (3/8 W2) (3)



TCP Throughput (cont)

– Loss = 8/(3W2)                               (4)

– Substituting (4) in (2), S = 0.75 W MSS / RTT , 

Throughput ≈   
€ 

⇒W =
8

3⋅ Loss

€ 

€ 

1.22 × MSS
RTT⋅ Loss

• Equation-based rate control can be TCP friendly and have better 
properties, e.g., small jitter, fast ramp-up…



What Happens When Link is Lossy?

• Throughput ≈ 1 / sqrt(Loss)
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What can we do about it?

• Two types of losses: congestion and corruption
• One option: mask corruption losses from TCP

– Retransmissions at the link layer
– E.g. Snoop TCP: intercept duplicate 

acknowledgments, retransmit locally, filter them from 
the sender

• Another option:
– Tell the sender about the cause for the drop
– Requires modification to the TCP endpoints



Congestion Avoidance

• TCP creates congestion to then back off
– Queues at bottleneck link are often full: increased delay
– Sawtooth pattern: jitter

• Alternative strategy
– Predict when congestion is about to happen
– Reduce rate early

• Other approaches
– Delay Based: TCP Vegas (not covered)
– Better model of congestion: BBR
– Router-centric: RED, ECN, DECBit, DCTCP



Another view of Congestion Control
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BBR

• Problem: can’t measure both RTTprop and 
Bottleneck BW at the same time

• BBR: 
– Slow start
– Measure throughput when RTT starts to increase
– Measure RTT when throughput is still increasing
– Pace packets at the BDP
– Probe by sending faster for 1RTT, then slower to 

compensate



BBR

From:	https://labs.ripe.net/Members/gih/bbr-tcp



TCP Vegas
• Idea: source watches for sign that router’s queue is building 

up (e.g., sending rate flattens)

TCP Vegas

Idea: source watches for some sign that router’s queue is building up
and congestion will happen—E.g., RTT grows or sending rate flattens.
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TCP Vegas
• Compare Actual Rate (A) with Expected Rate (E)

– If E-A > β, decrease cwnd linearly : A isn’t responding
– If E-A < α, increase cwnd linearly : Room for A to grow

6.4 Congestion-Avoidance Mechanisms 491
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Figure 6.19 Trace of TCP Vegas congestion-avoidance mechanism. Top, congestion
window; bottom, expected (colored line) and actual (black line) throughput. The shaded
area is the region between the α and β thresholds.

Evaluating a New

Congestion-Control

Mechanism

Suppose you develop a new

congestion-control mechanism and

want to evaluate its performance.

For example, you might want to

compare it to the current mech-

anism running on the Internet.

How do you go about measuring

and evaluating your mechanism?

Although at one time the Internet’s

primary purpose in life was to sup-

port networking research, today

it is a large production network

to be occupying at least three extra buffers

in the network and β as specifying that the

connection should occupy no more than six

extra buffers in the network. In practice, a

setting of α to one buffer and β to three

buffers works well.

Finally, you will notice that TCP Ve-

gas decreases the congestion window lin-

early, seemingly in conflict with the rule that

multiplicative decrease is needed to ensure

stability. The explanation is that TCP Ve-

gas does use multiplicative decrease when a

timeout occurs; the linear decrease just de-

scribed is an early decrease in the conges-

tion window that, hopefully, happens before

congestion occurs and packets start being

dropped.



Vegas

• Shorter router queues
• Lower jitter
• Problem:

– Doesn’t compete well with Reno. Why?
– Reacts earlier, Reno is more aggressive, ends up with 

higher bandwidth…



Help from the network

• What if routers could tell TCP that congestion 
is happening?
– Congestion causes queues to grow: rate mismatch

• TCP responds to drops
• Idea: Random Early Drop (RED)

– Rather than wait for queue to become full, drop 
packet with some probability that increases with 
queue length

– TCP will react by reducing cwnd
– Could also mark instead of dropping: ECN



RED Details
• Compute average queue length (EWMA)

– Don’t want to react to very quick fluctuationsAvgLen

Queue length

Instantaneous

Average

Time

• Smooths out AvgLen over time
- Don’t want to react to instantaneous fluctuations



RED Drop Probability

• Define two thresholds: MinThresh, MaxThresh
• Drop probability:

RED Details (cont)

• Computing probability P
- TempP = MaxP · (AvgLen�MinThreshold)/(MaxThreshold�

MinThreshold)

- P = TempP/(1� count · TempP)

• Drop Probability Curve:
P(drop)

1.0

MaxP

MinThresh MaxThresh

AvgLen

• Improvements to spread drops (see book)



RED Advantages

• Probability of dropping a packet of a particular 
flow is roughly proportional to the share of the 
bandwidth that flow is currently getting

• Higher network utilization with low delays
• Average queue length small, but can absorb 

bursts
• ECN

– Similar to RED, but router sets bit in the packet
– Must be supported by both ends
– Avoids retransmissions optionally dropped packets



What happens if not everyone cooperates?

• TCP works extremely well when its 
assumptions are valid
– All flows correctly implement congestion control
– Losses are due to congestion



Cheating TCP

• Possible ways to cheat
– Increasing cwnd faster
– Large initial cwnd
– Opening many connections
– Ack Division Attack



Increasing cwnd Faster

Limit rates:
x = 2y

C

x

y

x increases by 2 per RTT
y increases by 1 per RTT

Figure	from	Walrand,	Berkeley	EECS	122,	2003



Larger Initial Window 

A Bx

D Ey
x starts SS with cwnd = 4
y starts SS with cwnd = 1

Figure	from	Walrand,	Berkeley	EECS	122,	2003



Open Many Connections

• Assume:
– A opens 10 connections to B
– B opens 1 connection to E

• TCP is fair among connections
– A gets 10 times more bandwidth than B

A Bx

D Ey

• Web Browser: has to download k objects for a page
– Open many connections or download sequentially?

Figure	from	Walrand,	Berkeley	EECS	122,	2003



Exploiting Implicit Assumptions

• Savage, et al., CCR 1999: 
– “TCP Congestion Control with a Misbehaving Receiver”

• Exploits ambiguity in meaning of ACK
– ACKs can specify any byte range for error control
– Congestion control assumes ACKs cover entire sent segments

• What if you send multiple ACKs per segment?



ACK Division Attack

2.1 TCP review

While a detailed description of TCP's error and congestion con-
trol mechanisms is beyond the scope of this paper, we describe the
rudiments of their behavior below to allow those unfamiliar with
TCP to understand the vulnerabilities explained later. For simplic-
ity, we consider TCP without the Selective Acknowledgment op-
tion (SACK) [MMFR96], although the vulnerabilities we describe
also exist when SACK is used.

TCP is a connection-oriented, reliable, ordered, byte-stream
protocol with explicit flow control. A sending host divides the data
stream into individual segments, each of which is no longer than the
Sender Maximum Segment Size (SMSS) determined during con-
nection establishment. Each segment is labeled with explicit se-
quence numbers to guarantee ordering and reliability. When a host
receives an in-sequence segment it sends a cumulative acknowl-
edgment (ACK) in return, notifying the sender that all of the data
preceding that segment's sequence number has been received and
can be retired from the sender's retransmission buffers. If an out-
of-sequence segment is received, then the receiver acknowledges
the next contiguous sequence number that was expected. If out-
standing data is not acknowledged for a period of time, the sender
will timeout and retransmit the unacknowledged segments.

TCP uses several algorithms for congestion control, most no-
tably slow start and congestion avoidance [Jac88, Ste94, APS99].
Each of these algorithms controls the sending rate by manipulating
a congestion window (cwnd) that limits the number of outstanding
unacknowledged bytes that are allowed at any time. When a con-
nection starts, the slow start algorithm is used to quickly increase
cwnd to reach the bottleneck capacity. When the sender infers that
a segment has been lost it interprets this has an implicit signal of
network overload and decreases cwnd quickly. After roughly ap-
proximating the bottleneck capacity, TCP switches to the conges-
tion avoidance algorithm which increases the value of cwnd more
slowly to probe for additional bandwidth that may become avail-
able.

We now describe three attacks on this congestion control pro-
cedure that exploit a sender's vulnerability to non-conforming re-
ceiver behavior.

2.2 ACK division

TCP uses a byte granularity error control protocol and consequently
each TCP segment is described by sequence number and acknowl-
edgment fields that refer to byte offsets within a TCP data stream.
However, TCP's congestion control algorithm is implicitly defined
in terms of segments rather than bytes. For example, the most re-
cent specification of TCP's congestion control behavior, RFC 2581,
states:

During slow start, TCP increments cwnd by at most
SMSS bytes for each ACK received that acknowledges
new data.
...
During congestion avoidance, cwnd is incremented by 1
full-sized segment per round-trip time (RTT).
The incongruence between the byte granularity of error control

and the segment granularity (or more precisely, SMSS granularity)
of congestion control leads to the following vulnerability:

Attack 1:
Upon receiving a data segment containing N bytes, the
receiver divides the resulting acknowledgment into M,
where M N, separate acknowledgments – each cov-
ering one of M distinct pieces of the received data seg-
ment.

RTT

Sender Receiver

ACK 487

Data 4381:5841

Data 1461:2921Data 2921:4381

Data 5841:7301

ACK 973

ACK 1461

Data 1:1461

Figure 1: Sample time line for a ACK division attack. The sender be-
gins with cwnd=1, which is incremented for each of the three valid ACKs
received. After one round-trip time, cwnd=4, instead of the expected value
of cwnd=2.

This attack is demonstrated in Figure 1 with a time line. Here,
each message exchanged between sender and receiver is shown as
a labeled arrow, with time proceeding down the page. The labels
indicate the type of message, data or acknowledgment, and the se-
quence space consumed. In this example we can see that each ac-
knowledgment is valid, in that it covers data that was sent and pre-
viously unacknowledged. This leads the TCP sender to grow the
congestion window at a rate that is M times faster than usual. The
receiver can control this rate of growth by dividing the segment
at arbitrary points – up to one acknowledgment per byte received
(when M = N). At this limit, a sender with a 1460 byte SMSS could
theoretically be coerced into reaching a congestion window in ex-
cess of the normal TCP sequence space (4GB) in only four round-
trip times! 1 Moreover, while high rates of additional acknowledg-
ment traffic may increase congestion on the path to the sender, the
penalty to the receiver is negligible since the cumulative nature of
acknowledgments inherently tolerates any losses that may occur.

2.3 DupACK spoofing

TCP uses two algorithms, fast retransmit and fast recovery, to miti-
gate the effects of packet loss. The fast retransmit algorithm detects
loss by observing three duplicate acknowledgments and it immedi-
ately retransmits what appears to be the missing segment. How-
ever, the receipt of a duplicate ACK also suggests that segments
are leaving the network. The fast recovery algorithm employs this
information as follows (again quoted from RFC 2581):

Set cwnd to ssthresh plus 3*SMSS. This artificially “in-
flates” the congestion window by the number of seg-
ments (three) that have left the network and which the
receiver has buffered.
..
For each additional duplicate ACK received, increment
cwnd by SMSS. This artificially inflates the congestion
window in order to reflect the additional segment that
has left the network.

1Of course the practical transmission rate is ultimately limited by other factors such
as sender buffering, receiver buffering and network bandwidth.

• Receiver: “upon receiving a 
segment with N bytes, divide the 
bytes in M groups and acknowledge 
each group separately”

• Sender will grow window M times 
faster

• Could cause growth to 4GB in 4 
RTTs!
– M = N = 1460



TCP Daytona!
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Figure 4: The TCP Daytona ACK division attack convinces the TCP
sender to send all but the first few segments of a document in a single burst.

3 Implementation experience

To exploit the vulnerabilities described above, we made three mod-
ifications to the TCP subsystem of Linux 2.2.10. This resulting
TCP implementation, which we refer to facetiously as “TCP Day-
tona”, provides extremely high performance at the expense of its
competitors. We demonstrate these abilities with time sequence
plots of packet traces for both normal and modified receiver TCP's.
Needless to say, our implementation is intentionally not “stable”,
and would likely lead to congestion collapse if it were widely de-
ployed.

3.1 ACK division

The TCP Daytona ACK division algorithm adds 24 lines of code
that divide each new outgoing ACK into many ACKs for smaller
extents of the sequence space. Half of the new code is dedicated
to ensuring that the number of outgoing ACKs is no more than
should be needed to coerce a sender in slow start to saturate our
test machine's 100Mbps Ethernet interface.

Figure 4 shows client-side TCP sequence number plots of our
test machine making an HTTP request for the index.html ob-
ject from cnn.com, with and without our ACK division attack en-
abled. This figure spans the entire transaction, beginning with the
TCP handshake that starts at 0ms and ends at around 70ms, when
the HTTP request is sent. The first HTTP data from the server ar-
rives at around 140ms.

This figure shows that, when this attack is enabled, the many
small ACKs sent around 140ms convince the Web server to un-
leash the entire remainder of the document in a single burst; this
data arrives exactly one round-trip time later. By contrast, with the
normal TCP implementation, the server spreads out the data over
the next four round-trip times. In general, as this figure suggests,
this attack can convince a TCP sender to send all of its data in a
single burst.

3.2 DupACK spoofing

The TCP Daytona DupACK spoofing attack is implemented by 11
lines of code that cause the receiver to send sufficient duplicate
ACKs such that the sender (re-)enters fast recovery and fills the
receiver's advertised flow control window each round-trip time.

Figure 5 shows another client-side plot of the same HTTP re-
quest, this time with the DupACK spoofing attack superimposed
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Figure 5: The TCP Daytona DupACK spoofing attack, like the ACK divi-
sion attack, convinces the TCP sender to send all but the first few segments
of a document in a single burst.
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Figure 6: The TCP Daytona optimistic ACK attack, by sending a stream
of early ACKs, convinces the TCP sender to send data much earlier than it
normally would.

on a normal transfer. The many duplicate ACKs that the receiver
sends at around 140ms cause the sender to enter fast recovery and
transmit the rest of the data, which arrives at around 210ms. Were
there more data, the flurry of duplicate ACKs sent at 210ms-230ms
would elicit another burst from the sender. Since there is no more
new data, the sender simply fills in the hole it perceives; this seg-
ment arrives at around 290ms. This figure illustrates how the Du-
pACK spoofing attack can achieve performance essentially equiva-
lent to the ACK division attack – namely, both attacks can convince
the sender to empty its entire send buffer in a single burst.

3.3 Optimistic ACKing

The TCP Daytona implementation of optimistic ACKing consists
of 45 lines of code. Because acknowledging data that has not ar-
rived is a fundamentally tricky business, we chose a very simple
implementation as a proof of concept. When a TCP connection
for an HTTP or FTP client receives its first data, we set a timer
to expire every 10ms. Any interval would do, but we chose 10ms
because it is the smallest interval that Linux 2.2.10 supports on the
Intel PC platform. Whenever this periodic timer expires, or a new
data segment arrives, our receiver sends a new optimistic ACK for
one MSS beyond the previous optimistic ACK.



Defense

• Appropriate Byte Counting 
– [RFC3465 (2003), RFC 5681 (2009)]
– In slow start, cwnd += min (N, MSS)
where N is the number of newly acknowledged bytes in 

the received ACK



Cheating TCP and Game Theory
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An alternative for reliability

• Erasure coding
– Assume you can detect errors
– Code is designed to tolerate entire missing packets

• Collisions, noise, drops because of bit errors
– Forward error correction

• Examples: Reed-Solomon codes, LT Codes, 
Raptor Codes

• Property:
– From K source frames, produce B > K encoded frames
– Receiver can reconstruct source with any K’ frames, 

with K’ slightly larger than K
– Some codes can make B as large as needed, on the fly



LT Codes

• Luby Transform Codes
– Michael Luby, circa 1998

• Encoder: repeat B times
1. Pick a degree d (*)
2. Randomly select d source blocks. Encoded block tn= 

XOR or selected blocks

* The degree is picked from a distribution, robust soliton
distribution, that guarantees that the decoding process will succeed 
with high probability



LT Decoder

• Find an encoded block tn with d=1
• Set sn = tn

• For all other blocks tn’ that include sn , 
set tn’=tn’ XOR  sn

• Delete sn from all encoding lists
• Finish if

1. You decode all source blocks, or
2. You run out out blocks of degree 1



Next Time

• Move into the application layer
• DNS, Web, Security, and more…



Backup slides

• We didn’t cover these in lecture: won’t be in 
the exam, but you might be interested J



More help from the network

• Problem: still vulnerable to malicious flows!
– RED will drop packets from large flows preferentially, 

but they don’t have to respond appropriately
• Idea: Multiple Queues (one per flow)

– Serve queues in Round-Robin
– Nagle (1987)
– Good: protects against misbehaving flows
– Disadvantage?
– Flows with larger packets get higher bandwidth



Solution

• Bit-by-bit round robing
• Can we do this?

– No, packets cannot be preempted!
• We can only approximate it…



Fair Queueing

• Define a fluid flow system as one where flows 
are served bit-by-bit

• Simulate ff, and serve packets in the order in 
which they would finish in the ff system

• Each flow will receive exactly its fair share
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Implementing FQ
• Suppose clock ticks with each bit transmitted

– (RR, among all active flows)
• Pi is the length of the packet
• Si is packet i’s start of transmission time
• Fi is packet i’s end of transmission time
• Fi = Si + Pi

• When does router start transmitting packet i?
– If arrived before Fi-1, Si = Fi-1

– If no current packet for this flow, start when packet 
arrives (call this Ai): Si = Ai

• Thus, Fi = max(Fi-1,Ai) + Pi



Fair Queueing

• Across all flows
– Calculate Fi for each packet that arrives on each flow
– Next packet to transmit is that with the lowest Fi
– Clock rate depends on the number of flows

• Advantages
– Achieves max-min fairness, independent of sources
– Work conserving

• Disadvantages
– Requires non-trivial support from routers
– Requires reliable identification of flows
– Not perfect: can’t preempt packets



Fair Queueing Example

• 10Mbps link, 1 10Mbps UDP, 31 TCPs
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Big Picture

• Fair Queuing doesn’t eliminate congestion: 
just manages it

• You need both, ideally:
– End-host congestion control to adapt
– Router congestion control to provide isolation


