
CSCI-1680
Physical Layer

Link Layer I

Based	partly	on	lecture	notes	by	David	Mazières,	Phil	Levis,	John	Jannotti

Rodrigo Fonseca

Administrivia

• Snowcast milestone today!
• HW0 due today.
• All the long list of signups from last class J

Today

• Physical Layer
– Modulation and Channel Capacity
– Encoding

• Link Layer I
– Framing

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service:	move	bits	to	other	node	across	link	

Service:	move	frames	to	other	node	across	link.
May	add	reliability,	medium	access	control

Service:	move	packets	to	any	other	node	in	the	network
IP:	Unreliable,	best-effort	service	model

Service:	multiplexing	applications
Reliable	byte	stream	to	other	node	(TCP),	
Unreliable	datagram	(UDP)

Service:	user-facing	application.
Application-defined	messages

Physical Layer (Layer 1)

• Responsible for specifying the physical medium
– Type of cable, fiber, wireless frequency

• Responsible for specifying the signal (modulation)
– Transmitter varies something (amplitude, frequency, phase)
– Receiver samples, recovers signal

• Responsible for specifying the bits (encoding)
– Bits above physical layer -> chips

Modulation

• Specifies mapping between digital signal and
some variation in analog signal

• Why not just a square wave (1v=1; 0v=0)?
– Not square when bandwidth limited

• Bandwidth – frequencies that a channel
propagates well
– Signals consist of many frequency components
– Attenuation and delay frequency-dependent

Components of a Square Wave

Graphs	from	Dr.	David	Alciatore,	Colorado	State	University

Graphs	from	Dr.	David	Alciatore,	Colorado	State	University

Approximation of a Square Wave

Idea: Use Carriers

• Only use frequencies that transmit well
• Modulate the signal to encode bits

Specifying the Signal: Modulation

On-Off Keying

(OOK)

1 0 1

Amplitude Shift

Keying (ASK)

1 0 1

Specifying the Signal: Modulation

On-Off Keying

(OOK)

1 0 1

Amplitude Shift

Keying (ASK)

1 0 1

OOK: On-Off Keying ASK: Amplitude Shift Keying

Modulation, Continued

Frequency Shift

Keying (FSK)

1 0 1

Phase Shift

Keying (PSK)

1 0 1

Idea: Use Carriers

• Only use frequencies that transmit well
• Modulate the signal to encode bits

FSK: Frequency Shift Keying PSK: Phase Shift KeyingModulation, Continued

Frequency Shift

Keying (FSK)

1 0 1

Phase Shift

Keying (PSK)

1 0 1

How Fast Can You Send?

• Encode information in some varying characteristic
of the signal.

• If B is the maximum frequency of the signal

C = 2B bits/s
(Nyquist, 1928)

Can we do better?

• So we can only change 2B/second, what if we encode
more bits per sample?
– Baud is the frequency of changes to the physical channel
– Not the same thing as bits!

• Suppose channel passes 1KHz to 2KHz
– 1 bit per sample: alternate between 1KHz and 2KHz
– 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
– Or send at different amplitudes: A/4, A/2, 3A/4, A
– n bits: choose among 2n frequencies!

• What is the capacity if you can distinguish M levels?

Example

Phase

Hartley’s Law

C = 2B log2(M) bits/s

Great. By increasing M, we can have as large a
capacity as we want!

Or can we?

The channel is noisy!

• Noise prevents you from increasing M
arbitrarily!

• This depends on the signal/noise ratio (S/N)
• Shannon: C = B log2(1 + S/N)
– C is the channel capacity in bits/second
– B is the bandwidth of the channel in Hz
– S and N are average signal and noise power
– Signal-to-noise ratio is measured in dB = 10log10(S/N)

The channel is noisy!

Putting it all together

• Noise limits M!
2B log2(M) ≤ B log2(1 + S/N)

M ≤ √1+S/N
• Example: Telephone Line
– 3KHz b/w, 30dB S/N = 10ˆ(30/10) = 1000
– C = 3KHz log2(1001) ≈ 30Kbps

Encoding
• Now assume that we can somehow modulate a

signal: receiver can decode our binary stream
• How do we encode binary data onto signals?
• One approach: 1 as high, 0 as low!
– Called Non-return to Zero (NRZ)

0 0 1 0 1 0 1 1 0

NRZ
(non-return	to	zero)

Clock

Drawbacks of NRZ

• No signal could be interpreted as 0 (or vice-versa)
• Consecutive 1s or 0s are problematic
• Baseline wander problem
– How do you set the threshold?
– Could compare to average, but average may drift

• Clock recovery problem
– For long runs of no change, could miscount periods

Alternative Encodings

• Non-return to Zero Inverted (NRZI)
– Encode 1 with transition from current signal
– Encode 0 by staying at the same level
– At least solve problem of consecutive 1s

0 0 1 0 1 0 1 1 0

Clock

NRZI
(non-return	to	zero	

intverted)

Manchester

• Map 0 à chips 01; 1 à chips 10
– Transmission rate now 1 bit per two clock cycles

• Solves clock recovery, baseline wander
• But cuts transmission rate in half

0 0 1 0 1 0 1 1 0

Clock

Manchester

4B/5B

• Can we have a more efficient encoding?
• Every 4 bits encoded as 5 chips
• Need 16 5-bit codes:
– selected to have no more than one leading 0 and no

more than two trailing 0s
– Never get more than 3 consecutive 0s

• Transmit chips using NRZI
• Other codes used for other purposes
– E.g., 11111: line idle; 00100: halt

• Achieves 80% efficiency

4B/5B Table

Encoding Goals

• DC Balancing (same number of 0 and 1 chips)
• Clock synchronization
• Can recover some chip errors
• Constrain analog signal patterns to make signal more

robust
• Want near channel capacity with negligible errors
– Shannon says it’s possible, doesn’t tell us how
– Codes can get computationally expensive

• In practice
– More complex encoding: fewer bps, more robust
– Less complex encoding: more bps, less robust

Last Example: 802.15.4

• Standard for low-power, low-rate wireless
PANs
– Must tolerate high chip error rates

• Uses a 4B/32B bit-to-chip encoding

802.15.4

• Standard for low-rate wireless personal networks
- Must tolerate high chip error rates

• Uses a 32-to-4 chip-to-bit encoding

0011

0010

0001

0000

1111

1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0

1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0

0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0

0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1

1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0

Bits Chips

S
y
m
b
o
ls

Questions so far?

Photo: Lewis Hine

Today

• Physical Layer
– Modulation and Channel Capacity
– Encoding

• Link Layer I
– Framing

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service:	move	bits	to	other	node	across	link	

Service:	move	frames	to	other	node	across	link.
May	add	reliability,	medium	access	control

Service:	move	packets	to	any	other	node	in	the	network
IP:	Unreliable,	best-effort	service	model

Service:	multiplexing	applications
Reliable	byte	stream	to	other	node	(TCP),	
Unreliable	datagram	(UDP)

Service:	user-facing	application.
Application-defined	messages

Framing

• Given a stream of bits, how can we represent
boundaries?

• Break sequence of bits into a frame
• Typically done by network adaptor

Frames

Bits

Node A Node BAdaptor Adaptor

Link Layer
Framing

Representing Boundaries

• Sentinels
• Length counts
• Clock-based

Frames

Bits

Node A Node BAdaptor Adaptor

Sentinel-based Framing

• Byte-oriented protocols (e.g. BISYNC, PPP)
– Place special bytes (SOH, ETX,…) in the beginning, end of

messages

• What if ETX appears in the body?
– Escape ETX byte by prefixing DEL byte
– Escape DEL byte by prefixing DEL byte
– Technique known as character stuffing

S
Y

N

Header Body

8 8 8 8 168

S
Y

N

S
O

H

S
T

X

E
T

X

CRC

Bit-Oriented Protocols

• View message as a stream of bits, not bytes
• Can use sentinel approach as well (e.g., HDLC)

– HDLC begin/end sequence 01111110
• Use bit stuffing to escape 01111110
– Always append 0 after five consecutive 1s in data
– After five 1s, receiver uses next two bits to decide if

stuffed, end of frame, or error.

Header Body

8 16 16 8

CRC
Beginning
sequence

Ending
sequence

Length-based Framing

• Drawback of sentinel techniques
– Length of frame depends on data

• Alternative: put length in header (e.g., DDCMP)

• Danger: Framing Errors
– What if high bit of counter gets corrupted?
– Adds 8K to length of frame, may lose many frames
– CRC checksum helps detect error

S
Y

N

Header Body

8 8 4214 168

S
Y

N

C
la

s
s

CRCCount

Clock-based Framing
• E.g., SONET (Synchronous Optical Network)
– Each frame is 125μs long
– Look for header every 125μs
– Encode with NRZ, but first XOR payload with 127-bit

string to ensure lots of transitions

Overhead Payload

90 columns

9 rows

Error Detection

• Basic idea: use a checksum
– Compute small checksum value, like a hash of packet

• Good checksum algorithms
– Want several properties, e.g., detect any single-bit error
– Details in a later lecture

Next Week

• Next week: more link layer
– Flow Control and Reliability
– Ethernet
– Sharing access to a shared medium
– Switching

• Next Thursday: Snowcast due, HW1 out

