CSCI-1680 Physical Layer Link Layer I

Rodrigo Fonseca

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti

Administrivia

- Snowcast milestone today!
- HW0 due today.
- All the long list of signups from last class ©

Today

- Physical Layer
 - Modulation and Channel Capacity
 - Encoding
- Link Layer I
 - Framing

Layers, Services, Protocols

Physical Layer (Layer 1)

- Responsible for specifying the physical medium
 Type of cable, fiber, wireless frequency
- Responsible for specifying the signal (modulation)
 - Transmitter varies *something* (amplitude, frequency, phase)
 - Receiver samples, recovers signal
- Responsible for specifying the bits (encoding)
 - Bits above physical layer -> chips

Modulation

- Specifies mapping between digital signal and some variation in analog signal
- Why not just a square wave (1v=1; 0v=0)?
 - Not square when bandwidth limited
- Bandwidth frequencies that a channel propagates well
 - Signals consist of many frequency components
 - Attenuation and delay frequency-dependent

Components of a Square Wave

Approximation of a Square Wave

individual harmonics combined harmonics ω ω 300 $\omega_0, 3\omega$ $amp = 4/(3\pi)$ $5\omega_0$ ω₀, 3ω₀, 5ω $amp = 4/(5\pi)$ ∞ (1) $\omega_0, 3\omega_0, 5\omega_0, \ldots, \infty\omega_0$ amp = 0

Idea: Use Carriers

- Only use frequencies that transmit well
- Modulate the signal to encode bits

Idea: Use Carriers

- Only use frequencies that transmit well
- *Modulate* the signal to encode bits

How Fast Can You Send?

- Encode information in some varying characteristic of the signal.
- If B is the maximum frequency of the signal

C = 2B bits/s

(Nyquist, 1928)

Can we do better?

- So we can only change 2B/second, what if we encode more bits per sample?
 - Baud is the frequency of changes to the physical channel
 - Not the same thing as bits!
- Suppose channel passes 1KHz to 2KHz
 - 1 bit per sample: alternate between 1KHz and 2KHz
 - 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
 - Or send at different amplitudes: A/4, A/2, 3A/4, A
 - n bits: choose among 2ⁿ frequencies!
- What is the capacity if you can distinguish M levels?

Example

256-QAM Constellation

Hartley's Law

$C = 2B \log_2(M) bits/s$

Great. By increasing M, we can have as large a capacity as we want!

Or can we?

The channel is noisy!

The channel is noisy!

- Noise prevents you from increasing M arbitrarily!
- This depends on the signal/noise ratio (S/N)
- **Shannon:** $C = B \log_2(1 + S/N)$
 - C is the channel capacity in bits/second
 - B is the bandwidth of the channel in Hz
 - S and N are average signal and noise power
 - Signal-to-noise ratio is measured in $dB = 10log_{10}(S/N)$

Putting it all together

• Noise limits M!

$$2B \log_2(M) \le B \log_2(1 + S/N)$$
$$M \le \sqrt{1 + S/N}$$

- Example: Telephone Line
 - 3KHz b/w, 30dB S/N = 10^(30/10) = 1000
 - $C = 3KHz \log_2(1001) \approx 30Kbps$

Encoding

- Now assume that we can somehow modulate a signal: receiver can decode our binary stream
- How do we encode binary data onto signals?
- One approach: 1 as high, 0 as low!

- Called Non-return to Zero (NRZ)

Drawbacks of NRZ

- No signal could be interpreted as 0 (or vice-versa)
- Consecutive 1s or 0s are problematic
- Baseline wander problem
 - How do you set the threshold?
 - Could compare to average, but average may drift
- Clock recovery problem
 - For long runs of no change, could miscount periods

Alternative Encodings

- Non-return to Zero Inverted (NRZI)
 - Encode 1 with transition from current signal
 - Encode 0 by staying at the same level
 - At least solve problem of consecutive 1s

Manchester

- Map $0 \rightarrow$ chips $01; 1 \rightarrow$ chips 10
 - Transmission rate now 1 bit per two clock cycles
- Solves clock recovery, baseline wander
- But cuts transmission rate in half

4B/5B

- Can we have a more efficient encoding?
- Every 4 bits encoded as 5 chips
- Need 16 5-bit codes:
 - selected to have no more than one leading 0 and no more than two trailing 0s
 - Never get more than 3 consecutive 0s
- Transmit chips using NRZI
- Other codes used for other purposes
 - E.g., 11111: line idle; 00100: halt
- Achieves 80% efficiency

4B/5B Table

0	0000	11110
1	0001	01001
2	0010	10100
3	0011	10101
4	0100	01010
5	0101	01011
6	0110	01110
7	0111	01111
8	1000	10010
9	1001	10011
А	1010	10110
В	1011	10111
С	1100	11010
D	1101	11011
E	1110	11100
F	1111	11101

Encoding Goals

- DC Balancing (same number of 0 and 1 chips)
- Clock synchronization
- Can recover some chip errors
- Constrain analog signal patterns to make signal more robust
- Want near channel capacity with negligible errors
 - Shannon says it's possible, doesn't tell us how
 - Codes can get computationally expensive
- In practice
 - More complex encoding: fewer bps, more robust
 - Less complex encoding: more bps, less robust

Last Example: 802.15.4

- Standard for low-power, low-rate wireless PANs
 - Must tolerate high chip error rates
- Uses a 4B/32B bit-to-chip encoding

Questions so far?

K1221

Photo: Lewis Hine

Today

- Physical Layer
 - Modulation and Channel Capacity
 - Encoding
- Link Layer I
 - Framing

Layers, Services, Protocols

Framing

- Given a stream of bits, how can we represent boundaries?
- Break sequence of bits into a frame
- Typically done by network adaptor

Link Layer Framing

Representing Boundaries

- Sentinels
- Length counts
- Clock-based

Sentinel-based Framing

- Byte-oriented protocols (e.g. BISYNC, PPP)
 - Place special bytes (SOH, ETX,...) in the beginning, end of messages

- What if ETX appears in the body?
 - Escape ETX byte by prefixing DEL byte
 - Escape DEL byte by prefixing DEL byte
 - Technique known as *character stuffing*

Bit-Oriented Protocols

- View message as a stream of bits, not bytes
- Can use sentinel approach as well (e.g., HDLC)

- HDLC begin/end sequence 01111110
- Use *bit stuffing* to escape 01111110
 - Always append 0 after five consecutive 1s in data
 - After five 1s, receiver uses next two bits to decide if stuffed, end of frame, or error.

Length-based Framing

• Drawback of sentinel techniques

- Length of frame depends on data

• Alternative: put length in header (e.g., DDCMP)

• Danger: Framing Errors

- What if high bit of counter gets corrupted?
- Adds 8K to length of frame, may lose many frames
- CRC checksum helps detect error

Clock-based Framing

- E.g., SONET (Synchronous Optical Network)
 - Each frame is 125µs long
 - Look for header every $125\mu s$
 - Encode with NRZ, but first XOR payload with 127-bit string to ensure lots of transitions

Error Detection

• Basic idea: use a checksum

- Compute small checksum value, like a hash of packet

Good checksum algorithms

- Want several properties, *e.g.*, detect any single-bit error
- Details in a later lecture

Next Week

• Next week: more link layer

- Flow Control and Reliability
- Ethernet
- Sharing access to a shared medium
- Switching
- Next Thursday: Snowcast due, HW1 out

