CSCI-1680
Network Layer:
Inter-domain Routing – Policy and Security

Rodrigo Fonseca
• Homework 2 is out
• Rodrigo’s office hours:
 – Wednesday 1-3 (or by appointment)
Today

• BGP Continued
 – Policy routing, instability, vulnerabilities
Route Selection

- More specific prefix
- Next-hop reachable?
- Prefer highest weight
 - Computed using some AS-specific local policy
- Prefer highest local-pref
- Prefer locally originated routes
- Prefer routes with shortest AS path length
- Prefer eBGP over iBGP
- Prefer routes with lowest cost to egress point
 - Hot-potato routing
- Tie-breaking rules
 - E.g., oldest route, lowest router-id
Customer/Provider AS relationships

• **Customer pays for connectivity**
 – E.g. Brown contracts with OSHEAN
 – Customer is stub, provider is a transit

• **Many customers are multi-homed**
 – E.g., OSHEAN connects to Level3, Cogent

• **Typical policies:**
 – Provider tells all neighbors how to reach customer
 – Provider prefers routes from customers ($$)
 – Customer does not provide transit service
Peer Relationships

• ASs agree to exchange traffic for free
 – Penalties/Renegotiate if imbalance

• Tier 1 ISPs have no default route: all peer with each other

• You are Tier $i + 1$ if you have a default route to a Tier I

• Typical policies
 – AS only exports customer routes to peer
 – AS exports a peer’s routes only to its customers
 – Goal: avoid being transit when no gain
AS Relationships

• How to prevent X from forwarding transit between B and C?

• How to avoid transit between CBA?
 - B: BAZ -> X
 - B: BAZ -> C? (=> Y: CBAZ and Y:CAZ)

Example from Kurose and Ross, 5th Ed
Gao-Rexford Model

- (simplified) Two types of relationships: peers and customer/provider

- Export rules:
 - Customer route may be exported to all neighbors
 - Peer or provider route is only exported to customers

- Preference rules:
 - Prefer routes through customer ($$)

- If all ASes follow this, shown to lead to stable network
Peering Drama

• Cogent vs. Level3 were peers
• In 2003, Level3 decided to start charging Cogent
• Cogent said no
• **Internet partition**: Cogent’s customers couldn’t get to Level3’s customers and vice-versa
 – Other ISPs were affected as well
• Took 3 weeks to reach an undisclosed agreement
“Shutting off” the Internet

• Starting from Jan 27th, 2011, Egypt was disconnected from the Internet
 – 2769/2903 networks withdrawn from BGP (95%)!

Source: RIPEStat - http://stat.ripe.net/egypt/
Egypt Incident

Number of Egyptian networks

<table>
<thead>
<tr>
<th>Date</th>
<th>Network Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-01-27 00:00</td>
<td>2903</td>
</tr>
<tr>
<td>11-01-27 02:00</td>
<td>327</td>
</tr>
<tr>
<td>11-01-27 16:00</td>
<td>239</td>
</tr>
<tr>
<td>11-01-27 20:00</td>
<td>241</td>
</tr>
<tr>
<td>11-01-29 00:00</td>
<td>242</td>
</tr>
<tr>
<td>11-01-29 18:00</td>
<td>243</td>
</tr>
<tr>
<td>11-01-31 22:00</td>
<td>134</td>
</tr>
<tr>
<td>11-02-02 10:00</td>
<td>2539</td>
</tr>
<tr>
<td>11-02-02 12:00</td>
<td>2825</td>
</tr>
</tbody>
</table>

Source: BGPMon (http://bgpmon.net/blog/?p=480)
Some BGP Challenges

• Convergence
• Traffic engineering
 – How to assure certain routes are selected
• Scaling (route reflectors)
• Security
Convergence

• Given a change, how long until the network re-stabilizes?
 – Depends on change: sometimes never
 – Open research problem: “tweak and pray”
 – Distributed setting is challenging

• Some reasons for change
 – Topology changes
 – BGP session failures
 – Changes in policy
 – Conflicts between policies can cause oscillation
Routing Change: Before and After

Before:

0 → 1 → 3 → 2

After:

0 → 1 → (1,2,0) → 2 → (3,2,0)
Routing Change: Path Exploration

- **AS 1**
 - Delete the route (1,0)
 - Switch to next route (1,2,0)
 - Send route (1,2,0) to AS 3

- **AS 3**
 - Sees (1,2,0) replace (1,0)
 - Compares to route (2,0)
 - Switches to using AS 2
Routing Change: Path Exploration

- **Initial situation**
 - Destination 0 is alive
 - All ASes use direct path

- **When destination dies**
 - All ASes lose direct path
 - All switch to longer paths
 - Eventually withdrawn

- **E.g., AS 2**
 - \((2,0) \rightarrow (2,1,0)\)
 - \((2,1,0) \rightarrow (2,3,0)\)
 - \((2,3,0) \rightarrow (2,1,3,0)\)
 - \((2,1,3,0) \rightarrow \text{null}\)

- **Convergence may be slow!**
Route Engineering

- Route filtering
- Setting weights
- More specific routes: longest prefix
- AS prepending: “477 477 477 477”
- More of an art than science
Multiple Stable Configurations
BGP Wedgies [RFC 4264]

• Typical policy:
 – Prefer routes from customers
 – Then prefer shortest paths
BGP Wedgies

1.2.0.0/16: 1 1 1 1 (Backup Path)
1.2.0.0/16: 1 Primary Path
BGP Wedgies

1.2.0.0/16: 1 1 1 1
(Backup Path)

1.2.0.0/16: 1
Primary Path
BGP Wedgies

3 prefers customer route: stable configuration!

3 \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1

1.2.0.0/16: 1 1 1 1 (Backup Path)

1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4

1.2.0.0/16: 1 Primary Path
Unstable Configurations

- Due to policy conflicts (Dispute Wheel)
Avoiding BGP Instabilities

• **Detecting conflicting policies**
 – Centralized: NP-Complete problem!
 – Distributed: open research problem
 – Requires too much cooperation

• **Detecting oscillations**
 – Monitoring for repetitive BGP messages

• **Restricted routing policies and topologies**
 – Some topologies / policies proven to be safe*

* Gao & Rexford, “Stable Internet Routing without Global Coordination”, IEEE/ACM ToN, 2001
Scaling iBGP: route reflectors

iBGP Mesh == O(n^2) mess
Scaling iBGP: route reflectors

Solution: Route Reflectors
O(n*k)
BGP Security Goals

• Confidential message exchange between neighbors

• **Validity of routing information**
 – Origin, Path, Policy

• Correspondence to the data path
Origin: IP Address Ownership and Hijacking

• **IP address block assignment**
 – Regional Internet Registries (ARIN, RIPE, APNIC)
 – Internet Service Providers

• **Proper origination of a prefix into BGP**
 – By the AS who owns the prefix
 – … or, by its upstream provider(s) in its behalf

• **However, what’s to stop someone else?**
 – Prefix hijacking: another AS originates the prefix
 – BGP does not verify that the AS is authorized
 – Registries of prefix ownership are inaccurate
Prefix Hijacking

12.34.0.0/16

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations
Hijacking is Hard to Debug

• Real origin AS doesn’t see the problem
 – Picks its own route
 – Might not even learn the bogus route
• May not cause loss of connectivity
 – E.g., if the bogus AS snoops and redirects
 – … may only cause performance degradation
• Or, loss of connectivity is isolated
 – E.g., only for sources in parts of the Internet
• Diagnosing prefix hijacking
 – Analyzing updates from many vantage points
 – Launching traceroute from many vantage points
• **Originating a more-specific prefix**
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix
How to Hijack a Prefix

• The hijacking AS has
 – Router with eBGP session(s)
 – Configured to originate the prefix

• Getting access to the router
 – Network operator makes configuration mistake
 – Disgruntled operator launches an attack
 – Outsider breaks in to the router and reconfigures

• Getting other ASes to believe bogus route
 – Neighbor ASes not filtering the routes
 – … e.g., by allowing only expected prefixes
 – But, specifying filters on *peering* links is hard
Pakistan Youtube incident

• Youtube’s has prefix 208.65.152.0/22
• Pakistan’s government order Youtube blocked
• Pakistan Telecom (AS 17557) announces 208.65.153.0/24 in the wrong direction (outwards!)
• Longest prefix match caused worldwide outage
• http://www.youtube.com/watch?v=IzLPKuAOe50
Many other incidents

• **Spammers steal unused IP space to hide**
 – Announce very short prefixes (e.g., /8). Why?
 – For a short amount of time

• **China incident, April 8th 2010**
 – China Telecom’s AS23724 generally announces 40 prefixes
 – On April 8th, announced ~37,000 prefixes
 – About 10% leaked outside of China
 – Suddenly, going to www.dell.com might have you routing through AS23724!
Attacks on BGP Paths

• Remove an AS from the path
 – E.g., 701 3715 88 -> 701 88

• Why?
 – Attract sources that would normally avoid AS 3715
 – Make path through you look more attractive
 – Make AS 88 look like it is closer to the core
 – Can fool loop detection!

• May be hard to tell whether this is a lie
 – 88 could indeed connect directly to 701!
Attacks on BGP Paths

• Adding ASes to the path
 – E.g., 701 88 -> 701 3715 88

• Why?
 – Trigger loop detection in AS 3715
 • This would block unwanted traffic from AS 3715!
 – Make your AS look more connected

• Who can tell this is a lie?
 – AS 3715 could, if it could see the route
 – AS 88 could, but would it really care?
Attacks on BGP Paths

• Adding ASes at the end of the path
 – E.g., 701 88 into 701 88 3

• Why?
 – Evade detection for a bogus route (if added AS is legitimate owner of a prefix)

• Hard to tell that the path is bogus!

18.0.0.0/8 18.0.0.0/8
Proposed Solution: S-BGP

• Based on a public key infrastructure
• **Address attestations**
 – Claims the right to originate a prefix
 – Signed and distributed out of band
 – Checked through delegation chain from ICANN
• **Route attestations**
 – Attribute in BGP update message
 – Signed by each AS as route along path
• **S-BGP can avoid**
 – Prefix hijacking
 – Addition, removal, or reordering of intermediate ASes
S-BGP Deployment

• Very challenging
 – PKI (RPKI)
 – Accurate address registries
 – Need to perform cryptographic operations on all path operations
 – Flag day almost impossible
 – Incremental deployment offers little incentive

• But there is hope! [Goldberg et al, 2011]
 – Road to incremental deployment
 – Change rules to break ties for secure paths
 – If a few top Tier-1 ISPs
 – Plus their respective stub clients deploy simplified version (just sign, not validate)
 – Gains in traffic => $ => adoption!
Data Plane Attacks

• Routers/ASes can advertise one route, but not necessarily follow it!
• May drop packets
 – Or a fraction of packets
 – What if you just slow down some traffic?
• Can send packets in a different direction
 – Impersonation attack
 – Snooping attack
• How to detect?
 – Congestion or an attack?
 – Can let ping/traceroute packets go through
 – End-to-end checks?
• Harder to pull off, as you need control of a router
BGP Recap

- Key protocol that holds Internet routing together
- Path Vector Protocol among Autonomous Systems
- Policy, feasibility first; non-optimal routes
- Important security problems
Next Class

• Network layer wrap up