CSCI-1680
Network Layer: Wrapup

Rodrigo Fonseca
Administrivia

• **Homework 2 is due today**
 – So we can post solutions before the midterm!

• **Exam on Thursday**
 – All content up to today (no TCP!)
 – Questions similar to the homework
 – Book has some exercises, samples on the course web page
Today: IP Wrap-up

- IP Service models
 - Unicast, Broadcast, Anycast, Multicast
- IPv6
 - Tunnels
Different IP Service Models

• Broadcast: send a packet to all nodes in some subnet. “One to all”
 – 255.255.255.255: all hosts within a subnet, never forwarded by a router
 – “All ones host part”: broadcast address
 • Host address | (255.255.255.255 & ~subnet mask)
 • E.g.: 128.148.32.143 mask 255.255.255.128
 • ~mask = 0.0.0.127 => Bcast = 128.148.32.255

• Example use: DHCP

• Not present in IPv6
 – Use multicast to link local all nodes group
Anycast

- Multiple hosts may share the same IP address
- “One to one of many” routing
- Example uses: load balancing, nearby servers
 - DNS Root Servers (e.g. f.root-servers.net)
 - Google Public DNS (8.8.8.8)
 - IPv6 6-to-4 Gateway (192.88.99.1)
Anycast Implementation

• Anycast addresses are /32s

• At the BGP level
 – Multiple ASs can advertise the same prefixes
 – Normal BGP rules choose one route

• At the Router level
 – Router can have multiple entries for the same prefix
 – Can choose among many

• Each packet can go to a different server
 – Best for services that are fine with that (connectionless, stateless)
Multicast

• **Send messages to many nodes: “one to many”**

• **Why do that?**
 – Snowcast, Internet Radio, IPTV
 – Stock quote information
 – Multi-way chat / video conferencing
 – Multi-player games

• **What’s wrong with sending data to each recipient?**
 – Link stress
 – Have to know address of all destinations
Multicast Service Model

- Receivers join a multicast group G
- Senders send packets to address G
- Network routes and delivers packets to all members of G
- Multicast addresses: class D (start 1110)
 224.x.x.x to 229.x.x.x
 - 28 bits left for group address
LAN Multicast

- Easy on a shared medium
- Ethernet multicast address range:
 - 01:00:5E:00:00:00 to 01:00:5E:7f:ff:ff
- Set low 23 bits of Ethernet address to low bits of IP address
 - (Small problem: 28-bit group address -> 23 bits)

How about on the Internet?
Use Distribution Trees

• **Source-specific trees:**
 – Spanning tree over recipients, rooted at each source
 – Best for each source

• **Shared trees:**
 – Single spanning tree among all sources and recipients
 – Hard to find one shared tree that’s best for many senders

• **State in routers much larger for source-specific**
Source vs Shared Trees
Building the Tree: Host to Router

- Nodes tell their local routers about groups they want to join
 - IGMP, Internet Group Management Protocol (IPv4)
 - MLD, Multicast Listener Discovery (IPv6)
- Router periodically polls LAN to determine memberships
 - Hosts are not required to leave, can stop responding
Building the Tree across networks

• Routers maintain multicast routing tables
 – Multicast address -> set of interfaces, or
 – <Source, Multicast address> -> set of interfaces

• Critical: only include interfaces where there are downstream recipients
Practical Considerations

• Multicast protocols end up being quite complex
• Introduce a lot of router state
• Turned off on most routers
• Mostly used within domains
 – In the department: Ganglia monitoring infrastructure
 – IPTV on campus
• Alternative: do multicast in higher layers
IPv6

• Main motivation: IPv4 address exhaustion
• Initial idea: larger address space
• Need new packet format:
 – REALLY expensive to upgrade all infrastructure!
 – While at it, why don’t we fix a bunch of things in IPv4?
• Work started in 1994, basic protocol published in 1998
The original expected plan

From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html
The plan in 2011

Graph showing the trend of IPv6 pool size, size of the Internet, IPv6 transition (Dual Stack), and IPv6 deployment over time from 2004 to 2012.
What is really happening

- **IPV4 Pool Size**
- **Size of the Internet**
- **IPV6 Transition - Dual Stack**
- **IPV6 Deployment**

Date

Current Adoption (as seen by Google)

IPv6 Key Features

• 128-bit addresses
 – Autoconfiguration

• Simplifies basic packet format through extension headers
 – 40-byte base header (fixed)
 – Make less common fields optional

• Security and Authentication
IPv6 Address Representation

- Groups of 16 bits in hex notation

- Two rules:
 - Leading 0’s in each 16-bit group can be omitted
 47cd:1244:3422:0:0:fef4:43ea:1
 - One contiguous group of 0’s can be compacted
 47cd:1244:3422::fef4:43ea:1
IPv6 Addresses

• Break 128 bits into 64-bit network and 64-bit interface
 – Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example

• Types of addresses
 – All 0’s: unspecified
 – 000…1: loopback
 – ff/8: multicast
 – fe8/10: link local unicast
 – fec/10: site local unicast
 – All else: global unicast
IPv6 Header

<table>
<thead>
<tr>
<th></th>
<th>Class</th>
<th>Flow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver</td>
<td></td>
<td>Length</td>
<td>Next Hdr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>(16 octets, 128 bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td>(16 octets, 128 bits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPv6 Header Fields

- Version: 4 bits, 6
- Class: 8 bits, like TOSS in IPv4
- Flow: 20 bits, identifies a flow
- Length: 16 bits, datagram length
- Next Header, 8 bits: …
- Hop Limit: 8 bits, like TTL in IPv4
- Addresses: 128 bits
- What’s missing?
 - No options, no fragmentation flags, no checksum
Design Philosophy

• **Simplify handling**
 – New option mechanism (fixed size header)
 – No more header length field

• **Do less work at the network (why?)**
 – No fragmentation
 – No checksum

• **General flow label**
 – No semantics specified
 – Allows for more flexibility

• **Still no accountability**

With some content from Scott Shenker
Interoperability

- RFC 4291
- Every IPv4 address has an associated IPv6 address
- Simply prefix 32-bit IPv4 address with 96 bits of 0
 - E.g., ::128.148.32.2
- Two IPv6 endpoints must have IPv6 stacks
- Transit network:
 - v6 – v6 – v6 : ✔
 - v4 – v4 – v4 : ✔
 - v4 – v6 – v4 : ✔
 - v6 – v4 – v6 : X!!
IP Tunneling

- Encapsulate an IP packet inside another IP packet
- Makes an end-to-end path look like a single IP hop
IPv6 in IPv4 Tunneling

- Key issues: configuring the tunnels
 - Determining addresses
 - Determining routes
 - Deploying relays to encapsulate/forward/decapsulate
- 6to4 is a standard to automate this
 - Deterministic address generation
 - Anycast 192.88.99.1 to find gateway into IPv6 network
 - Drawbacks: voluntary relays, requires public endpoint address
Other uses for tunneling

• Virtual Private Networks
• Use case: access CS network from the outside
• Set up an encrypted TCP connection between your computer and Brown’s OpenVPN server
• Configure routes to Brown’s internal addresses to go through this connection
• Can connect two remote sites securely
Extension Headers

- Two types: hop-by-hop and end-to-end
- Both have a next header byte
- Last next header also denotes transport protocol
- Destination header: intended for IP endpoint
 - Fragment header
 - Routing header (loose source routing)
- Hop-by-hop headers: processed at each hop
 - Jumbogram: packet is up to 2^{32} bytes long!
Example Next Header Values

• 0: Hop by hop header
• 1: ICMPv4
• 4: IPv4
• 6: TCP
• 17: UDP
• 41: IPv6
• 43: Routing Header
• 44: Fragmentation Header
• 58: ICMPv6
Fragmentation and MTU

- Fragmentation is supported only on end hosts!
- Hosts should do MTU discovery
- Routers will not fragment: just send ICMP saying packet was too big
- Minimum MTU is 1280-bytes
 - If some link layer has smaller MTU, must interpose fragmentation reassembly underneath
Current State

• IPv6 Deployment has been slow
• Most end hosts have dual stacks today
 (Windows, Mac OS X, Linux, *BSD, Solaris)
• 2008 Google study:
 – Less than 1% of traffic globally
• Requires all parties to work!
 – Servers, Clients, DNS, ISPs, all routers
• IPv4 and IPv6 will coexist for a long time
Next time: Midterm

• After that, transport layer and above!
 – UDP, TCP, Congestion Control
 – Application protocols
 – …