Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti
Administrivia

• Snowcast milestone today!
Today

- **Physical Layer**
 - Modulation and Channel Capacity
 - Encoding

- **Link Layer I**
 - Framing
Layers, Services, Protocols

- **Application**
 - Service: user-facing application.
 - Application-defined messages

- **Transport**
 - Service: multiplexing applications
 - Reliable byte stream to other node (TCP),
 - Unreliable datagram (UDP)

- **Network**
 - Service: move packets to any other node in the network
 - IP: Unreliable, best-effort service model

- **Link**
 - Service: move frames to other node across link.
 - May add reliability, medium access control

- **Physical**
 - Service: move bits to other node across link
Physical Layer (Layer 1)

• Responsible for specifying the physical medium
 – Type of cable, fiber, wireless frequency

• Responsible for specifying the signal (modulation)
 – Transmitter varies *something* (amplitude, frequency, phase)
 – Receiver samples, recovers signal

• Responsible for specifying the bits (encoding)
 – Bits above physical layer -> *chips*
Modulation

• Specifies mapping between digital signal and some variation in analog signal

• Why not just a square wave (1v=1; 0v=0)?
 – Not square when bandwidth limited

• Bandwidth – frequencies that a channel propagates well
 – Signals consist of many frequency components
 – Attenuation and delay frequency-dependent
Use Carriers

• Idea: only use frequencies that transmit well
• *Modulate* the signal to encode bits

OOK: On-Off Keying

| 1 | 0 | 1 |

ASK: Amplitude Shift Keying

| 1 | 0 | 1 |
Use Carriers

- Idea: only use frequencies that transmit well
- *Modulate* the signal to encode bits

FSK: Frequency Shift Keying

```
1 0 1
```

PSK: Phase Shift Keying

```
1 0 1
```

Graphs of FSK and PSK signals.
How Fast Can You Send?

- Encode information in some varying characteristic of the signal.
- If B is the maximum frequency of the signal

$$C = 2B \text{ bits/s}$$

(Nyquist, 1928)
Can we do better?

- So we can only change 2B/second, what if we encode more bits per sample?
 - Baud is the frequency of changes to the physical channel
 - Not the same thing as bits!
- Suppose channel passes 1KHz to 2KHz
 - 1 bit per sample: alternate between 1KHz and 2KHz
 - 2 bits per sample: send one of 1, 1.33, 1.66, or 2KHz
 - Or send at different amplitudes: A/4, A/2, 3A/4, A
 - n bits: choose among 2^n frequencies!
- What is the capacity if you can distinguish M levels?
Example

256-QAM Constellation
Hartley’s Law

\[C = 2B \log_2(M) \text{ bits/s} \]

Great. By increasing \(M \), we can have as large a capacity as we want!

Or can we?
The channel is noisy!
The channel is noisy!

- Noise prevents you from increasing M arbitrarily!
- This depends on the signal/noise ratio (S/N)
- **Shannon:** $C = B \log_2(1 + S/N)$
 - C is the channel capacity in bits/second
 - B is the bandwidth of the channel in Hz
 - S and N are average signal and noise power
 - Signal-to-noise ratio is measured in dB = $10\log_{10}(S/N)$
Putting it all together

• Noise limits M!

$$2B \log_2(M) \leq B \log_2(1 + S/N)$$

$$M \leq \sqrt{1 + S/N}$$

• Example: Telephone Line

– 3KHz b/w, 30dB S/N = $10^{(30/10)} = 1000$
– $C = 3\text{KHz} \log_2(1001) \approx 30\text{Kbps}$
Encoding

• Now assume that we can somehow modulate a signal: receiver can decode our binary stream
• How do we encode binary data onto signals?
• One approach: 1 as high, 0 as low!
 – Called Non-return to Zero (NRZ)
Drawbacks of NRZ

• No signal could be interpreted as 0 (or vice-versa)
• Consecutive 1s or 0s are problematic
• Baseline wander problem
 – How do you set the threshold?
 – Could compare to average, but average may drift
• Clock recovery problem
 – For long runs of no change, could miscount periods
Alternative Encodings

• **Non-return to Zero Inverted (NRZI)**
 - Encode 1 with transition from current signal
 - Encode 0 by staying at the same level
 - At least solve problem of consecutive 1s
Manchester

- Map 0 \rightarrow chips 01; 1 \rightarrow chips 10
 - Transmission rate now 1 bit per two clock cycles
- Solves clock recovery, baseline wander
- But cuts transmission rate in half
Can we have a more efficient encoding?

Every 4 bits encoded as 5 *chips*

Need 16 5-bit codes:
- selected to have no more than one leading 0 and no more than two trailing 0s
- Never get more than 3 consecutive 0s

Transmit chips using NRZI

Other codes used for other purposes
- E.g., 11111: line idle; 00100: halt

Achieves 80% efficiency
Encoding Goals

- DC Balancing (same number of 0 and 1 chips)
- Clock synchronization
- Can recover some chip errors
- Constrain analog signal patterns to make signal more robust
- Want near channel capacity with negligible errors
 - Shannon says it’s possible, doesn’t tell us how
 - Codes can get computationally expensive
- In practice
 - More complex encoding: fewer bps, more robust
 - Less complex encoding: more bps, less robust
Last Example: 802.15.4

- Standard for low-power, low-rate wireless PANs
 - Must tolerate high chip error rates
- Uses a 4B/32B bit-to-chip encoding

```
<table>
<thead>
<tr>
<th>Bits</th>
<th>Chips</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11011001111000011010100100101011110</td>
</tr>
<tr>
<td>0001</td>
<td>11101101110011110001101010100100010</td>
</tr>
<tr>
<td>0010</td>
<td>0010111101101110011100011010101010010</td>
</tr>
<tr>
<td>0011</td>
<td>00100010110110110110011110000111010101</td>
</tr>
<tr>
<td></td>
<td>11111001010110000111101111011110000110101</td>
</tr>
</tbody>
</table>
```

Today

• **Physical Layer**
 – Modulation and Channel Capacity
 – Encoding

• **Link Layer I**
 – Framing
Layers, Services, Protocols

- **Application**: Service: user-facing application. Application-defined messages
- **Transport**: Service: multiplexing applications
 Reliable byte stream to other node (TCP),
 Unreliable datagram (UDP)
- **Network**: Service: move packets to any other node in the network
 IP: Unreliable, best-effort service model
- **Link**: Service: move frames to other node across link.
 May add reliability, medium access control
- **Physical**: Service: move bits to other node across link
Framing

- Given a stream of bits, how can we represent boundaries?
- Break sequence of bits into a frame
- Typically done by network adaptor
Link Layer Framing
Representing Boundaries

- Sentinels
- Length counts
- Clock-based

Diagram:
- Node A
 - Adaptor
- Node B
 - Adaptor
- Bits
- Frames
Sentinel-based Framing

• **Byte-oriented protocols (e.g. BISYNC, PPP)**
 – Place special bytes (SOH, ETX,...) in the beginning, end of messages

 ![Diagram of Sentinel-based Framing]

 - SYN | SYN | SOH | Header | STX | Body | ETX | CRC

 8 8 8 8

• **What if ETX appears in the body?**
 – Escape ETX byte by prefixing DEL byte
 – Escape DEL byte by prefixing DEL byte
 – Technique known as *character stuffing*
Bit-Oriented Protocols

• View message as a stream of bits, not bytes
• Can use sentinel approach as well (e.g., HDLC)
 – HDLC begin/end sequence 01111110
• Use bit stuffing to escape 01111110
 – Always append 0 after five consecutive 1s in data
 – After five 1s, receiver uses next two bits to decide if stuffed, end of frame, or error.
Length-based Framing

• **Drawback of sentinel techniques**
 – Length of frame depends on data

• **Alternative: put length in header (e.g., DDCMP)**

 ![Frame Diagram]

 SYN Header
 - 8
 - 8
 - 8
 - 14
 - 42
 - Body
 - 16
 - CRC

• **Danger: Framing Errors**
 – What if high bit of counter gets corrupted?
 – Adds 8K to length of frame, may lose many frames
 – CRC checksum helps detect error
Clock-based Framing

- E.g., SONET (Synchronous Optical Network)
 - Each frame is 125µs long
 - Look for header every 125µs
 - Encode with NRZ, but XOR payload with 127-bit string to ensure lots of transitions
Error Detection

• **Basic idea: use a checksum**
 – Compute small checksum value, like a hash of packet

• **Good checksum algorithms**
 – Want several properties, *e.g.*, detect any single-bit error
 – Details in a later lecture
Next Week

• **Next week: more link layer**
 – Flow Control and Reliability
 – Ethernet
 – Sharing access to a shared medium
 – Switching

• **Thursday Sep 20th: Snowcast due, HW1 out**