Virtual Machines
Part 1: 55 years ago
It’s 1964 …

- IBM wants a multiuser time-sharing system.
- TSS project
 - large, monolithic system
 - lots of people working on it
 - for years
 - total, complete flop
- CMS
 - single-user time-sharing system for IBM 360
- CP67
 - virtual machine monitor (VMM)
 - supports multiple virtual IBM 360s
- Put the two together …
 - a (working) multiuser time-sharing system
Virtual Machines

- Virtual Machine Monitor
- Virtual Machine OSa
- Applications
- Hardware

- Virtual Machine Monitor
- Virtual Machine OSb
- Applications
- Hardware

- Virtual Machine Monitor
- Virtual Machine OSc
- Applications
- Hardware
Why?

- Structuring technique for a multi-user system
- OS debugging and testing
- Multiple OSes on one machine
- Adapt to hardware changes in software
- Server consolidation and service isolation
User vs. Privileged Mode

• Privileged mode
 – may run all instructions, access all registers
 – for example:
 - modify address translation for virtual memory
 - access and control I/O devices
 - mask and unmask interrupts
 - start and stop system clock

• User mode
 – may run only “innocuous” instructions
 – may access only normal registers
How?

• Approach 1
 – system has “normal” scheduler and virtual memory
 – its processes run in privileged mode
How?

• Approach 2
 – system has “normal” scheduler and virtual memory
 – its processes run an emulator of the real machine
How?

• Approach 3
 – system has “normal” scheduler and virtual memory
 – its processes execute user-mode code directly, but run the emulator when going into privileged mode
How?

• Approach 4
 – system has “normal” scheduler and virtual memory
 – its processes execute non-privileged instructions directly, but emulate privileged instructions
How?

Privileged

User

Privileged

User
Requirements

• A virtual machine is an efficient, isolated duplicate of real machine
Sensitive Instructions

• Control-sensitive instructions
 – affect the allocation of resources available to the virtual machine
 – change processor mode without causing a trap

• Behavior-sensitive instructions
 – effect of execution depends upon location in real memory or on processor mode
Privileged Instructions

• Cause a fault in user mode
• Work fine in privileged mode
Theorem (!)

• For any conventional third-generation computer, a virtual machine monitor may be constructed if the set of sensitive instructions for that computer is a subset of the set of privileged instructions.
The (Real) 360 Architecture

- Two execution modes
 - supervisor and problem (user)
 - all sensitive instructions are privileged instructions
- Memory is protectable: 2k-byte granularity
- All interrupt vectors and the clock are in first 512 bytes of memory
- I/O done via channel programs in memory, initiated with privileged instructions
- Dynamic address translation (virtual memory) added for Model 67
Real Interrupts and Traps

<table>
<thead>
<tr>
<th>handler address</th>
</tr>
</thead>
<tbody>
<tr>
<td>handler address</td>
</tr>
</tbody>
</table>
Virtual Interrupts and Traps

- handler address
Actions on Real 360

<table>
<thead>
<tr>
<th></th>
<th>User mode</th>
<th>Privileged mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-sensitive instruction</td>
<td>executes fine</td>
<td>executes fine</td>
</tr>
<tr>
<td>errant instruction</td>
<td>traps to kernel</td>
<td>traps to kernel</td>
</tr>
<tr>
<td>sensitive instruction</td>
<td>traps to kernel</td>
<td>executes fine</td>
</tr>
<tr>
<td>access low memory</td>
<td>traps to kernel</td>
<td>executes fine</td>
</tr>
</tbody>
</table>
Actions on Virtual 360

<table>
<thead>
<tr>
<th></th>
<th>User mode</th>
<th>Privileged mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-sensitive</td>
<td>executes fine</td>
<td>executes fine</td>
</tr>
<tr>
<td>instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>errant instruction</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
</tr>
<tr>
<td>sensitive instruction</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
<td>traps to VMM; VMM verifies and emulates instruction</td>
</tr>
<tr>
<td>access low memory</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
<td>traps to VMM; VMM verifies and emulates/translates access</td>
</tr>
</tbody>
</table>
Quiz

Can a VMM (supporting other virtual machines) run on a virtual machine?

a) yes, no problem
b) it requires some changes to a VMM for it to run on a virtual machine
c) no, can’t be done
Virtual Devices?

- **Terminals**
 - connecting (real) people
- **Networks**
 - didn’t exist in the 60s
 - (how did virtual machines communicate?)
- **Disk drives**
 - CP67 supported “mini disks”
 - extended at Brown into “segment system”
- **Interval timer**
 - virtual or real?
Coping

• Invent new devices
 – recognized by VMM as not real, but referring to additional functionality
 - e.g., mini disks
• Provide new VM facilities not present on real machine
 – e.g., Brown segment system
 – special instructions on VM to request service from VMM
 - sort of like system calls (supervisor calls on 360), but ...
 • hypervisor calls
 – 360 had an extra, unused privileged instruction
 – the diagnose instruction