
Operating Systems In Depth IV–1 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Implementing Threads 3



Operating Systems In Depth IV–2 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

One-Level Model

Processors

Kernel

User



Operating Systems In Depth IV–3 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Variable-Weight Processes

• Variant of one-level model
• Portions of parent process selectively copied

into or shared with child process
• Children created using clone system call



Operating Systems In Depth IV–4 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Cloning

Parent Child

Virtual Memory

FS:
root, cwd,

umask

Files:
file-descriptor

table

Signal

Info



Operating Systems In Depth IV–5 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Linux Threads
(pre 2.6)

Initial
Thread

Manager
Thread

Other
Thread

Other
Thread

Other
Thread

Pipe



Operating Systems In Depth IV–6 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

NPTL in Linux 2.6

• Native POSIX-Threads Library
– full POSIX-threads semantics on improved 

variable-weight processes
- threads of a “process” form a thread group

• getpid() returns process ID of first thread in 
group
• any thread in group can wait for any other to 

terminate
• signals to process delivered by kernel to any 

thread in group



Operating Systems In Depth IV–7 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Two-Level Model
One Kernel Thread

Processors

Kernel

User



Operating Systems In Depth IV–8 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Coping …

ssize_t read(int fd, void *buf, size_t count) {
ssize_t ret;
while (1) {

if ((ret = real_read(fd, buf, count)) == -1) {
if (errno == EWOULDBLOCK) {

sem_wait(&FileSemaphore[fd]);
continue;

}
}
break;

}
return(ret);

}



Operating Systems In Depth IV–9 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Two-Level Model:
Multiple Kernel Threads

Processors

Kernel

User



Operating Systems In Depth IV–10 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Quiz

One kernel thread for each user thread is 
clearly a sufficient number of kernel threads in 
the two-level model. Is it necessary?
a) there must always be that number of kernel 

threads for the two-level model to work well.
b) there are situations in which that number is 

necessary, but they occur rarely.
c) there are no situations in which that number 

of threads is necessary, as long as there are 
at least as many kernel threads as 
processors.



Operating Systems In Depth IV–11 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Deadlock

Kernel

User



Operating Systems In Depth IV–12 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

MThreads

• Two-level threads implementation of Uthreads
– kernel-supported threads are POSIX threads

– user threads based on your implementation of 
Uthreads

• Effectively a multiprocessor implementation
– use POSIX mutexes rather than spin locks

– use POSIX condition variables rather than the 
idle loop



Operating Systems In Depth IV–13 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Two-Level Model:
MThreads

Processors

POSIX threads
(LWPs)

Uthreads



Operating Systems In Depth IV–14 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Thread-Local Storage in 
Mthreads

• __thread thread_t *ut_curthr;
– reference to the current uthread

• __thread lwp_t *curlwp
– reference to the current LWP (POSIX thread)

• Thread-Local Storage accesses are not 
async-signal safe!
– handler for SIGVTALRM references TLS
– must mask SIGVTALRM when using TLS



Operating Systems In Depth IV–15 Copyright © 2019 Thomas W. Doeppner. All rights reserved.

Scheduler Activations

Kernel
User

Kernel scheduler

User
scheduler

User
scheduler


