CS 167 Operating Systems Doeppner

C Coding Style and Conventions
2015

1 Introduction

This document shall serve as a brief introduction to C coding style, according to the standards
that we will be following in this class. As in other languages, proper style is not enforced by the
compiler, but is necessary in order to write clear and human-readable code. All support code will
be written according to these standards outlined in this document.

2 Functions Without Arguments

Function arguments in C are passed just as they are in Java, in a comma-separated list enclosed
by parentheses. If a function is called without arguments, the parentheses are still required, but
nothing is placed between them. When declaring a function, parameters are specified according to
the same syntax, with each parameter name preceded by a type name. In this respect, C functions
behave like those of Java.

However, when declaring a function that does not take any arguments, things get a bit more
complicated. In Java, one simply omits the argument list, leaving the function declaration with a
pair of empty parentheses, as below:

public int func()

In C, it is entirely possible to do exactly the same thing, leaving out the paramenters in the
declaration:

int func();

However, a C function that is declared in such a manner does not behave the same way. The
compiler interprets the declaration as that of a function which can take any number of arguments,
and will not check to ensure that you have passed in the proper number of arguments.

Instead, declare zero-argument functions with the following:
int func(void);

This declaration ensures that no arguments can be passed to func() at all.

3 Stars and Spaces Forever

One of the more hotly debated issues in the realm of C coding style is the question of where to
put the “star” character (*) when declaring a variable or function with a pointer type. This issue



CS 167 C Coding Style and Conventions 2015

divides C programmers into two ideologically—distinctEl groups. One group argues that the star
should come first (i.e. int* ptr), as it is part of the variable’s type (there is also precedence for
this in C++); the other favors association of the star with the variable’s name rather than its
type (i.e. int *ptr;). Java programmers may leap to agree with the first group, as in Java all
non-primitive types are effectively pointer types; however, there are compelling reasons to follow
the second style, as CS033 will.

This argument is based on a feature of C syntax: when multiple variables are declared in a sin-
gle statement, the type declaration “distributes” over the variable names; hence, the following
declaration will produce two new integer variables:

int i, j;
The same, however, is not true of the star operator. Consider the following declaration:
int* i, j;

Such a declaration is commonly interpreted to produce two variables which are both pointers to
integers. However, this is not the case; instead, only i is declared as a pointer to an integer, with j
being declared as merely an integer. To declare two pointers to integers, we must give each variable
its own star:

int *i, *j;

This syntactic feature provides a compelling argument in favor of space-star declarations. For many
data types, making a mistake can change the behavior of a program entirely. Consequently, this is
among the more important stylistic recommendations contained within this document.

4 Program Organization

An important organization issue that you must tackle as a C programmer is how to organize your
program into files. In Java, file organization is straightforward — each class gets its own file,
and all defitions corresponding to that class belong in that file. A C program, however, does not
have classes; each function belongs to the entire program. Consequently how functions should be
organized into files is less clear. In general, you should group functions of similar or interdepen-
dent functionality into the same file — for example, functions which operate on a particular data
structure should all be grouped together.

4.1 Header Files

C programs use header files to share functions or other definitions between different parts of a
program. These files should provide only functions which other parts of your program will need —
helper functions should not be declared in a header file.

'Really.



CS 167 C Coding Style and Conventions 2015

Header files are sometimes also an appropriate location for struct definitions. If other parts of the
program will make direct use of the struct fields, then the definition of that struct necessarily
must appear in the header file. If that is not the case, it is better to hide the struct definition in
a .c file. A common practice is to use a typedef statement in a header file to declare a type for
other parts of the program, and hide the definition of that type. For example:

typedef struct my_struct my_struct_t;

A typedef statement allows you to refer to objects of the first type with the second type — in this
example, a reference to a my_struct_t becomes the same as a reference to a struct my_struct.
By convention, _t is appended to the new type name.

5 Stylistic Conventions

Now that we’ve covered the most important facets of proper style, we will be moving on to several
less essential (but still important!) stylistic conventions of the C language. These conventions are
primarily motivated by readability and clarity of code, and will not directly affect the correctness
of your program, although they may well help you avoid bugs before you accidentally type them.
Nevertheless, we strongly recommend that you absorb and follow them so that you can develop a
consistent C style.

5.1 Function Length

Functions should be of a reasonable length: you should not have to scroll down through your editor
of choice to view an entire function body. Sometimes this may be unavoidable; in such cases, ensure
that your functions are easily broken up into discrete units.

You should not, however, sacrifice readability for length.

5.2 Brace Yourselves...

Another stylistic choice is the placement of the opening curly brace around the code block which
forms the body of a function, conditional, or loop. Here, there also seem to be two commonly-used
options: one may either place the opening brace immediately after the function name or reserved
word (with or without a space), or insert a newline before opening the code block. These styles,
respectively, are shown below:

while (1) {

while (1)
{



CS 167 C Coding Style and Conventions 2015

As with the space star versus star space debate, there is no syntactic differnce between these
two ways of writing a while loop — the C compiler treats all whitespace as a delimiter, without
discrimitating between spaces, tabs, or newlines. Use whichever convention you prefer, but please
do so consistently. Any support code you receive from CS033 will place the opening brace on the
same line as the function declaration or reserved word.

5.3 Naming Conventions

Different programming languages observe different naming conventions for programs, functions,
and variables. In Java, for example, the “CamelCase” convention is used:

public int countSomeItem(...) {
}

This convention is often employed by C programmers - for example, some of the lecture slides
employ this convention. However, another common convention frequently found in C programs is
to name program constructs using underscores:

int count_some_item(...) {
}

The C standard libraries abide by this convention, as do the support code files you will receive
throughout this course. For example, the <stdio.h> library names types and functions using
underscores (such as the size_t type and rand r() function).

Preprocessor macros are often named differently still, combining the two conventions.
#define NUM_ROWS 10

Macros are typically defined using all uppercase characters, with underscores separating different
words. As with the underscoring convention, C library functions abide by this convention - the
NULL pointer defined in <stdlib.h>, for example, is actually a macro.

Choice of convention is up to you. Note that using underscores may lend your code additional
consistency with the conventions used by the C standard libraries and staff-provided support code.
Regardless of what you choose, please write consistent and readable code.



	Introduction
	Functions Without Arguments
	Stars and Spaces Forever
	Program Organization
	Header Files

	Stylistic Conventions
	Function Length
	Brace Yourselves...
	Naming Conventions


