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Chapter 1

The Weenix OS

1.1 Motivation

The Weenix operating system is a project for people interested in writing parts of
a Unix kernel. The operating system was originally written in 1998 by teaching
assistants for Brown University’s operating systems course, taught by Professor
Tom Doeppner, and has been maintained by that course’s staff ever since. While
the operating system is mostly based on early versions of Unix, it incorporates
many recent developments in operating systems.

This book is intended to be a guide for students who are working on the
Weenix operating system and those interested in contributing to it. Part 1 is
an introduction to Weenix, including the basics of setting up your development
environment, using the build system, and running the OS in a virtual machine.
Part 2 contains five chapters, each of which specify an assignment. In the
operating systems course taught at Brown, students have a choice between doing
either:

• All five assignments.

• A separate threads library assignment followed by two of the Weenix as-
signments (VFS and S5FS).

Students pursuing the former option are assigned a mentor from the course
staff who will be a source of clarification or hints if the student wishes. The
latter option is provided to allow students who are not interested in a career in
operating systems development to learn the basics of operating systems without
spending the better part of their semester hacking the Weenix kernel. Each
assignment chapter begins with an overview of the assignment, then describes
the expected implementation in more detail, and ends with tips for testing.
Part 3 describes the inner workings of some key parts of the kernel not typically
explored during the assignments. This is mainly a resource for those wishing
to contribute to the Weenix project. Finally, several appendices are included

9



10 CHAPTER 1. THE WEENIX OS

which provide more details about development tools, online resources, and the
protocols of contributing new code.

1.2 How to Read This Book

We expect that there are at least two groups of people who will want to read
this book. If you are someone who wants to see Weenix run right now, jump
ahead to Quick Start: Getting Weenix Running. Everyone else should begin
by reading Project Management and then can read the assignments, manual,
and appendices in whatever order they please. However, if you plan to do the
assignments, we recommend that you do them in order, as they build on top of
one another.

1.3 History

The Weenix OS, and the course that it grew up with, have a long and illustrious
history. Although the Brown operating systems course has been taught since
the 1960s, Weenix was first written in the spring of 1998, running on what was
known only as the Brown Simulator 2.0. The two pieces of software were written
by Keith Adams, Michael Castelle, Caroline Dahllof, Jason Lango, and Dave
Powell. The name Weenix (“little *nix”) was invented by Keith Adams, and
the OS was designed based on early versions of Unix. In 2004, a competing
Brown operating system based on Windows (named HipOS) was created by
Hari Khalsa, whose effort was apparently completely vanquished. During 2007-
2009, Weenix moved off of the Brown Simulator and onto Xen virtual machines,
an effort spearheaded by David Pacheco, Joel Weinberger, Dan Kuebrich, and
Dimo Bounov. In 2010, Weenix found its current home running on Bochs, a
virtual machine including a simulated real machine. Chris Siden, Alvin Kerber,
and Shaun Verch were the major contributors for this move. Weenix has since
moved onto QEMU, an x86 processor emulator.

The features of Weenix now include:

• Intelligent multitasking

• Virtual memory

• Terminal emulation

• Polymorphic file system support

• Advanced device support (including APIC and PATA with BMIDE)

1.4 Acknowledgements

Weenix would not have been possible without the help of many earnest, devoted
individuals. Thanks first to Professor Tom Doeppner, for his patient guidance
and leadership.
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Chapter 2

Project Management

2.1 Introduction

The first section of this chapter guides the reader through the process of pro-
ducing a Weenix assignment from the project’s complete source code (useful
for course instructors), and the second explains how to set up a development
environment for implementing the assignment yourself (useful for students).

2.2 Preparing Weenix Assignments

This section will walk you through a sample run of Weenix, and then shows you
how to remove sections of code from the full implementation to allow you or
your students to re-implement them.

2.2.1 Quick Start: Getting Weenix Running

See instructions in the top-level README file.

2.2.2 Getting the Source

Requests for a copy of Weenix may be made via email to weenix-devel@lists.cs.brown.edu.

2.2.3 Dependencies

The following is required to run Weenix:

• gcc, the GNU C compiler

• make, the GNU build system

• qemu,the processor emulator that Weenix runs on top of

13



14 CHAPTER 2. PROJECT MANAGEMENT

• xorisso and grub-mkrescue (necessary to generate the disk image used
by the emulator)

• python, at least 2.6 (but 2.x only)

• bash

The following is optional, but recommended:

• git, the version control system

• gdb, the GNU debugger, and xterm

• cscope (for easier browsing of the Weenix source)

2.2.4 Configuration

Configuration for Weenix is available through editing the files Config.mk and
Global.mk, which contain VARIABLE=value assignments in make syntax. Global.mk
contains directives relevant to the environment that Weenix is running in (e.g.
alternative locations for utilities like python or gdb), while Config.mk is used
to configure values that affect the behavior of Weenix itself (such as what mod-
ules to enable during the compilation process, or the size of the virtual disk to
create).

In particular, you should be aware of the directives that affect what assign-
ment to enable. These are the first directives of Config.mk. For example, to
enable the S5FS assignment, set the first three to 1 (DRIVERS=1, VFS=1, and
S5FS=1).

2.2.5 Blanking Solutions

This section will teach you how to blank the solution for individual assignments.
You will wish to do this before you attempt to complete the Weenix assignments
(otherwise, you will find that they have already been done for you!) or before
you assign them to others.

The script make-weenix-repo.py in the tools/ directory performs this task.
It removes the contents of specially-marked functions, putting a NOT YET IMPLEMENTED()

marker in their place. It also initializes a fresh git repository in the root of the
source tree for you (or your students) to clone from.

1. Obtain an unmodified copy of the Weenix source tree.

If you skip this step, you will lose all of your work: the make-weenix-repo.py
will obliterate any git history that exists in the current source tree, as well
as the contents of assignments that are to be removed.

2. Change into the tools/ directory.
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3. Run ./make-weenix-repo.py --cutextra all --cutsource [ASSIGNMENTS],
where [ASSIGNMENTS] is a comma-delimited list of the projects you
want to assign (or “all”, without quotes).

For example, suppose you want to implement the S5FS and VM assign-
ments. You should blank the solutions for these assignments, and leave
the rest (PROCS, DRIVERS, and VFS) intact. This can be accomplished
with the command:

$ ./make-weenix-repo.py --cutextra all --cutsource S5FS,VM

The order of the assignments is: PROCS, DRIVERS, VFS, S5FS, and
lastly VM. Remember that each assignment depends on its predecessor in
order to run. For example, if you wish to start with the VM assignment,
do not blank any other assignments, or you will find yourself unable to
run the VM code you write.

As another example, suppose you want start fresh from the first assign-
ment. Run:

$ ./make-weenix-repo.py --cutextra all --cutsource all

4. Update the assignment directives in Config.mk to reflect the first assign-
ment you will work on.

These are described in detail in the Configuration section.

For example, if you are starting with the VFS assignment, set your as-
signment directives to:

DRIVERS=1

VFS=1

S5FS=0

VM=0

DYNAMIC=0

If you are making use of the git repository, you will need to commit this
change. For example:

$ git commit -m ’Updated Config.mk assignments directives’ Config.mk

Congratulations: you are now ready to start the assignment. If you need to
distribute the assignment to others, have them copy (or git clone, if you are
using git) this source tree to be their fresh copy to start working on.

2.3 Implementing Weenix Assignments

This section introduces some essential concepts in Weenix to e.g. a student who
is interested in completing a Weenix assignment.
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2.3.1 A Message to the Reader

Although this section is ostensibly about getting to know the Weenix codebase,
we realize this is also the last part of the book we can be certain everyone will
read, so we would like to give a few pieces of advice.

• It is possible that this is your first exposure to a large code base. You
should definitely spend some time poring over the existing code, thinking
about what to implement. Take a look in Appendix B to learn more about
working in large codebases.

• For this and future assignments, it may be helpful to draw out a call graph
(which functions call which) for the code you will be writing. Taking notes
about the code as you read it is a useful skill for any codebase.

• Become an expert at using your chosen development tools. This will save
you countless hours of time and energy, whether you learn to use a de-
bugger (see Appendix C), text editor/IDE, cscope, version control, or
something else. Many of these are mentioned in the appendix, so take a
look there for some tips for getting started.

• Be sure to ask questions! The course staff is friendly and has a great
working knowledge of the OS because they have implemented it them-
selves. Beyond that, getting Weenix working is far more rewarding if you
understand why something is done a particular way, and the repercussions
of choosing a different way to do something.

• Take breaks to relax. :-)

2.3.2 Build System

The Weenix build system is based on the popular Unix utility make. It is
meant to aid development by automating the compilation and linking of binaries,
although it is used to automate several other things in the Weenix codebase as
well.

In order to build the full operating system, make must be run in the top
directory of the Weenix repository. Each make target corresponds to particular
a set of commands listed in the Makefile located in the current directory. In the
case of the top-level Makefile, make all simply descends into the kernel and
user directories and executes make within each. The kernel and the userspace
binaries can be built separately, by calling make from their respective directories.
There are many different targets, such as individual object (.o) files, linked
binaries and disk images, but the most useful targets are listed below.

To compile all the code using eight concurrent tasks, a user should run:

$ make -j 8 [all]

or potentially just:
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$ make all

$ make % defaults to target "all"

if the pretty output is more important than the speed of compilation.
Sometimes, such as after a change in the configuration settings or compiler

flags, it is necessary to compile all the source code from scratch. However, make
will only rebuild a file if it has been modified since the last time it was built.
To delete all the constructed binaries and force make to compile from scratch, a
user may run:

$ make clean; make all

2.3.3 Assignment Specification

To find out what to implement for a newly opened assignment, use the following
command:

$ make nyi

This will produce a list of all the functions that are not yet written in the
codebase with labels telling what file they are in and what assignment they are
associated with.

Note that this command is only to be used with blanked assignments (oth-
erwise, there’s nothing to implement!).

2.3.4 Running

The weenix script has been provided for running the operating system inside a
virtual machine or hardware simulator. It should be invoked from the topmost
directory of the Weenix repository. To run it, one may simply use the command:

$ ./weenix

Until there is a functional on-disk file system, this is all that is necessary to
run Weenix. However, at that point, the ability to create disks becomes very
important. It is necessary to create a fresh disk the first time S5FS runs, and
also after any time the disk is corrupted by a buggy kernel or unclean shutdown.
The following command will run Weenix with a newly constructed disk:

$ ./weenix -n

At some point, it may be helpful to use a debugger to aid in the development
of the operating system. The following command will begin Weenix in a virtual
machine and attach gdb to it (if the virtual machine in use supports this option).

$ ./weenix -d gdb

The QEMU monitor can produce additional useful debugging information
from the virtual machine. The QEMU monitor will be displayed on stdout
instead of your debug messages, allowing you to query the virtual machine
directly. Refer to Appendix C for more on its useful commands.
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$ ./weenix -d qemu

These options (and their exciting longer names --new-disk and --debug)
are also visible at the command line.

$ ./weenix -h

2.3.5 Making Changes

Any time someone works on a large enough project, they will inevitably make
difficult-to-reverse mistakes or accidentally delete their work. The best way to
prepare oneself for this inevitability is to use a version control system. The
Weenix repository uses the source control system git, and everyone who un-
dertakes a project of this magnitude should become at least competent enough
to make commits, revert a file back to a previous commit, and make feature
branches for each new addition. The following list of steps are a highly recom-
mended way to implement a new piece of Weenix.

1. Make a new branch to develop in with a descriptive name.

2. Write tests for the new feature, running them frequently.

3. Write code, committing relatively frequently to avoid losing any work.

4. Make sure all the tests pass and that they comprehensively cover the set
of requirements.

5. Push the changes back onto the main branch once everything is functional.

6. Back up the entire project frequently using an external hard drive or (even
better) an online backup and recovery service.

Even if you don’t follow these steps, please, for the love of all things holy,
use source control. If you mess up your repository due to lack of experience,
somebody will be able to help you out of the mess and you’ll be back where
you were before, but if you mess up an unprotected directory, there is no going
back! Having a student who loses all their Weenix code is awful, and being that
student has been a recurring theme in many of our worst nightmares. If you
have any questions or have never used source control before, feel absolutely free
to reach out to the TA staff in setting it up.
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Chapter 3

Processes and Threads

3.1 Introduction

This assignment, colloquially referred to as “Kernel 1,” will provide the basic
building blocks for the Weenix operating system: threads, processes, and syn-
chronization primitives. These objects are implemented fully in kernel code,
and interactions with user-level processes and threads will not be possible until
you implement virtual memory in a later assignment.

Writing an operating system can be complicated, so much of the code to do
basic kernel operations such as memory allocation and page table management
has already been written. These are either beyond the scope of the project or
are too time consuming for too little value. While modifications to the support
code are fully possible, significant changes to the provided interfaces make errors
far more likely and make it harder to ask for help. However, it is important for
you to be able to take ownership of the code. Though it is usually too time-
consuming to write the entire system from scratch, by the end of the project,
you should have a good (if high-level) understanding of all the code involved.
This will certainly be true by VM, which will involve putting the final touches
on the kernel.

At the end of this first assignment, the kernel will be able to run several
threads and processes concurrently in kernel mode. It is important to emphasize
that a strong test suite is critical. For this assignment, test code must be added
directly into the boot sequence for the kernel, but in later assignments there
will be several additional ways to add tests in a cleaner, more modular way.

3.2 Kernel Memory Management

As mentioned above, this has been fully implemented for you, but take a moment
to look around include/kernel/mm/kmalloc.h, include/kernel/mm/slab.h
and kernel/mm/slab.c to familiarize yourself with the memory management
interface. The functions kmalloc() and kfree() exist as kernel-space worka-
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likes for the standard library malloc() and free() functions. However, these
should be used sparingly (for example, for incidental memory usage during test-
ing). Most of the kernel memory management you will be doing using the
slab allocators. A slab allocator, as used in Solaris and Linux, works like
a cache for memory chunks of a particular size. This reduces both the loss of
memory through fragmentation and the overhead from manipulating the heap
directly. Refer to include/kernel/mm/slab.h for the slab allocation and free-
ing functions you will be using.

3.3 Boot Sequence

Most of the boot sequence is handled by the support code. The last thing the
boot loader does is execute the function kmain(), which initializes the support
subsystems and then calls bootstrap().

At this point, we are still in the boot sequence, which means that we do not
have a thread context in which to properly execute. We cannot block, and we
cannot execute user code. The goal of bootstrap() is to set up the first kernel
thread and process, which together are called the idle process, and execute its
main routine. This should be a piece of cake once you have implemented threads
and the scheduler.

The idle process performs further initialization and starts the init process.
For now, all of your test code should be run in the init process. When your
operating system is nearly complete, it will execute a binary program in user
mode, but for now, be content to put together your own testing system for
threads and processes in kernel mode.

3.4 Processes and Threads

Weenix is capable of running multiple processes and threads. There are a few
important things to note about the Weenix threading model.

• There is no kernel mode preemption in Weenix (all threads run until they
explicitly yield control of the processor). It is possible (but not required)
to implement user mode preemption. Think about why this is much easier
to do.

• Weenix is only running on one processor, so synchronization primitives
don’t require atomic compare-and-swap instructions or memory barriers.

• Each process only has one thread associated with it, however the thread-
ing code is actually structured so that it would be easy to have multiple
threads per process. For example, each process keeps a list of its threads,
even though that list currently never has more than one entry. If a function
seems unnecessary to you, think of it in the context of multiple threads per
process. For instance, when exiting a thread, you must alert the process



3.5. SCHEDULER 23

that one of its threads exited, even though each process should only ever
have one thread.

• Think of a process as a collection of some number of threads and some
metadata. Killing a process is equivalent to killing its threads and vice-
versa.

The lifecycle of threads and processes is relatively straightforward. When
a process is created, a thread should be added to it and the process should be
made runnable by adding its thread to the run queue. If a process exits and
it still has child processes, it should reassign those children to the init process,
which, after performing some system setup, will sit in a loop collecting orphaned
processes. When a thread attempts to exit the current process, the process code
must cancel any other threads in the same process (and join with them, if there
are multiple) so that they can do any cleanup necessary for their current tasks.
Once each thread finishes cleaning up its current task, it makes a call to the
process code to indicate it is exiting so that the process can do any final cleanup
on the thread data structure.

Once all its threads have exited, a process can exit and one of its ancestors
(either its parent or the init process) will call do waitpid() and clean it up fully.
The reason for this somewhat odd deallocation system is that some elements
of the process and thread data structures can only be cleaned up from another
thread’s context. During this assignment, you should determine what these
items are, and clean up everything else in the process as quickly as possible. Also
note that processes which are children of the idle process will not be cleaned up
using this method; they are dealt with separately.

As a side note, you will be using linked lists extensively throughout Weenix.
By this point, you may have looked at the code and seen that some data struc-
tures contain list objects or link objects. We provide you with a circular doubly-
linked list implementation where the links are stored inside of the objects that
are in the list (hence the link fields inside the objects). Most of this list imple-
mentation is provided as a set of macros which can be found in the codebase.
You even get a couple of neat list iteration “primitives” that look like they’re
straight out of your favorite scripting language!

The trickiest parts of this segment are do waitpid() and proc kill all(),
not because they are conceptually difficult, but because it is very easy to acci-
dentally introduce bugs that you will discover much later. As such, you should
test the edge cases of these functions early and often throughout the develop-
ment of your operating system.

3.5 Scheduler

Once you have created processes and threads, you will need a way to run these
threads and switch between them. In most operating systems, you must worry
about thread priorities or quality of service assurances, which requires wait
queue as well as run queue optimizations, but the scheduler for Weenix consists
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only of first-in-first-out queues, a function to switch between the contexts of
two threads, and a few higher-level functions to abstract away the details of the
queues from the caller.

In particular, there is a single run queue from which threads are dequeued
(only when the running thread yields control explicitly) and switched onto the
processor. There are also many wait queues in the system, most of which will
be used as a part of some mutex. When a thread reaches the front of its wait
queue, it can be woken up, which involves putting it on the run queue, waiting
for it to reach the head of the run queue, and then being switched onto the
processor by some other thread running the switching routine.

Switching between threads is the most tricky code to write in this area, and
should be done carefully so as not to interact poorly with hardware interrupts.
In order to write a correct switch function, you must take the first thread off of
the run queue, set the global variables for current thread and current process to
point at the new thread and its process, then switch into the new context, all
with interrupts blocked (using the interrupt priority level, or IPL). If the run
queue is empty, it’s possible that all otherwise-runnable threads are waiting for
hardware interrupts, so you must have a way to check this as well. Don’t forget
that hardware interrupts, when not masked, can occur between any two code
instructions.

3.6 Synchronization Primitives

Since the kernel is multi-threaded, we need some way to ensure that certain
critical paths are not executed simultaneously by multiple threads. Once your
scheduling functions work, you should be able to implement synchronization
primitives as well. The only synchronization primitive used in Weenix is the
mutex, whose implementation uses a single FIFO thread queue, although you
may also implement condition variables, semaphores, barriers, etc. if you wish
to use them.

3.7 Testing

It is your responsibility to think of boundary conditions which could potentially
cause problems in your kernel. Test code is an important part of software
development, and if you cannot demonstrate that your kernel works properly,
we will assume that it does not.

As mentioned earlier, you should run all your test code from the init process’s
main function (for lack of a better location), although you can add a new file to
hold your tests. To be in the best shape possible before moving on, you should
be able to test all of the following situations.

• Run several threads and processes concurrently. Devise a way to show
that multiple threads are running and that they are working properly.
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• Demonstrate that threads and processes exit cleanly.

• Ensure all the edge cases of do waitpid() work correctly.

• Try exiting your kernel both by running proc kill all() and by allowing
all threads to terminate normally.

• Demonstrate that the synchronization primitives work.

• Create several child processes and force them to terminate out of order,
making sure they are cleaned up properly.

Keep in mind that this is not an exhaustive list, but that you should certainly
be able to demonstrate each of these tests passing by the end of this assignment.
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Chapter 4

Drivers

4.1 Introduction

Now that you have processes and threads working properly, you can begin writ-
ing the device drivers for terminals, disks, and the memory devices /dev/zero

and /dev/null. The code you will write for this part is in the drivers/ direc-
tory.

There are two different types of devices: block devices and character devices.
The disk devices you will be writing are block devices, while the terminals and
memory devices are character devices. These are similar because they share the
same interface, but there are significant differences in their implementation. In
order to make the relationships between devices easier to manage we use some
magic.

Remember to turn the DRIVERS project on in Config.mk and make clean

your project before you try to run your changes.

4.2 Object-Oriented C

As you look through the struct definitions of the different devices in the header
files, you should notice that the structs for more specific types of devices (e.g.
ttys and disks, referred to as the sub-struct from here on) contain the structures
for the generic devices (e.g. block and byte devices, referred to as the super-
struct) as fields. These are not pointers; they occupy memory that is part of
the sub-struct. This way, we can use memory offsets to cast both from sub-
struct to super-struct, and vice versa. So, given a pointer to the struct of a
byte device which you know is a terminal device, just subtract the size of the
rest of the terminal device struct and you have a pointer to the beginning of
the terminal device struct. There is a macro provided for the purpose of doing
these pointer conversions called CONTAINER OF. In many cases, a more specific
macro is defined using CONTAINER OF which converts from a super-struct to a
specific sub-struct (for an example, see bd to tty in drivers/tty/tty.c).
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You should also notice that one of the fields in the device structs is a pointer
to a struct containing only function pointers. The generic device types (e.g.
block and character devices) each specify that they expect certain operations
to be available (e.g. read() and write()). This function pointer struct con-
tains pointers to the functions which implement the expected operations so that
we can perform the correct type of operation without actually knowing what
type of device struct we are working with. The definitions of these function
pointer structs are in the C source files of their respective types. Essentially, we
are manually implementing a simple virtual function table (which is how C++
implements polymorphism).

4.3 TTY Device

Each tty device is represented by a tty device t struct. A tty consists of a
driver and a line discipline. The driver is what interfaces directly with the
hardware (keyboard and screen), while the line discipline interfaces with the
user (by buffering and formatting their tty I/O). In Weenix, the main purpose
of the tty subsystem is to glue together the low level driver and the high level
line discipline. The advantage of this is that when a program wants to perform
an I/O operation on a tty, it does not need to know the specifics of the hardware
or the line discipline. All of these implementation details are abstracted away
and dealt with by the functions in drivers/tty/tty.c.

Once you have a working virtual file system (after VFS) you will access
the terminals through files, specifically in the files /dev/tty0, /dev/tty1, etc.
Then you can read and write to the terminals using the do read and do write

functions. Until then, you will need to use the bytedev lookup function to get
devices and then explicitly call the device’s read/write functions in order to test
your code. A convenient way to do this is by using the kernel shell. For more
details, see the testing section at the end of this chapter.

4.3.1 Line Discipline

The line discipline is the high-level part of the tty. It provides the terminal
semantics you are used to. Essentially, there are two things the line discipline is
responsible for – buffering input it receives and telling the tty what characters
to print. Buffering input is what allows users to edit a line in a terminal before
pressing enter, or, as we call it, cooking the buffer. The buffer for a line disci-
pline is split into two sections, raw and cooked, so that the buffer can be filled
circularly. Before a circularly-contiguous segment of the buffer is cooked, the
user is able to edit it by editing the current line of text on the screen. When
the user presses enter, that segment of the buffer is cooked, a newline is echoed,
and the text becomes available to the running program via the read system call.
This is why the read system does not return until it receives a newline when
reading from a terminal. For simplicity, do not store more input than you can
put in the primary buffer (even though you could theoretically use the buffer
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that the waiting program provided as well).
The other important job of the line discipline is telling the tty which char-

acters to echo. After all, when you type into a terminal, the characters you
press appear on the screen. From the user’s perspective, this all happens au-
tomatically. From your perspective (you being a kernel hacker), this must be
done manually from the tty and the line discipline. The line discipline is also
responsible for performing any required processing on characters which will be
output to the tty via the write system call. In Weenix, the only characters that
are not just echoed are the newline, backspace, and Ctrl+D characters.

The line discipline interface is located in drivers/tty/ldisc.h, and the
default implementation of a line discipline, which is the only one you will be
implementing, is located in drivers/tty/n tty.c. (It is named N TTY because
that is the name of the default line discipline in the Linux kernel.)

4.3.2 TTY Driver

The tty driver is the low level part of the tty, and is responsible for communicat-
ing with hardware. When a key is pressed, the appropriate tty driver is notified.
If a handler was registered with the driver via the register callback handler

function, the key press is sent off to the handler. In our case, the tty subsystem
registers the tty global driver callback function with the driver, which calls
the line discipline’s receive char method. Then, after any high level process-
ing, any characters which need to be displayed on the screen are sent directly
to the driver via the provide char function.

The tty driver is already implemented for you. For anyone feeling adventur-
ous, feel free to take a look at drivers/tty/keyboard.c, drivers/tty/screen.c,
and drivers/tty/virtterm.c.

4.4 Disk Device Driver

A block device is associated with each disk device. This structure contains
information about what threads are waiting to perform I/O operations on the
disk, any necessary synchronization primitives, the device ID, and any other
information required by the ATA protocol. In Weenix, you can assume that all
disk blocks are page-sized. We have defined the BLOCK SIZE macro for you to
be the same size as the size of a page of memory; use it instead of a hard-coded
value.

4.5 Memory Devices

You will also be writing two memory devices, a data sink and source. These
will not really be necessary until VFS. Still, these fit will with the other device
drivers so they are included in this part of the assignment.

If you have played around with a Linux/UNIX machine, you might be famil-
iar with /dev/null and /dev/zero. These are both files that represent memory
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devices. Writing to /dev/null will always succeed (the data is discarded), while
reading from it will return EOF immediately. Writing to/dev/zero is the same
as writing to /dev/null, but reading any amount from /dev/zero will always
return as many zero bytes (’\0’) as you tried to read. The former is a data
sink and the later is a data source. The low level drivers for both of these will
be implemented in drivers/memdevs.c.

4.6 Testing

As always, it is important to stress test your terminal code.

• Have two threads read from the same terminal, which will cause each
thread to read every other line. If you’re not sure why this is, ask.

• Make sure that, if the internal terminal buffer is full, Weenix cleanly dis-
cards any excess data that comes in.

• Ensure that you can have two threads simultaneously writing to the same
terminal.

• Stress test your disk code. This will not be needed until the S5FS assign-
ment, but it is a good idea to make sure it works now.

• Make sure that you can have multiple threads reading, writing, and veri-
fying data from multiple disk blocks.

• Think of ways that you can write to a disk and display the data stored
there.

• Note that Weenix does not currently support Caps Lock

It is very important that you get this code working flawlessly, since it can be
a constant source of headaches later on if you don’t. Note that the disk driver
only works with page-aligned data, so you should use page alloc() to allocate
the memory used in your test cases, not kmalloc().

Since you should now have a functional tty, you should try using the ker-
nel shell to test it out. Once you are confident in your tty code, try imple-
menting your own kshell commands to run further kernel tests. Below is what
to add to initproc run (#include "test/kshell/kshell.h" at the top of
kernel/main/kmain.c):

/* Add some commands to the shell */

kshell_add_command("test1", test1, "tests something...");

kshell_add_command("test2", test2, "tests something else...");

/* Create a kshell on a tty */

int err = 0;

kshell_t *ksh = kshell_create(ttyid);
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KASSERT(ksh && "did not create a kernel shell as expected");

/* Run kshell commands until user exits */

while ((err = kshell_execute_next(ksh)) > 0);

KASSERT(err == 0 && "kernel shell exited with an error\n");

kshell_destroy(ksh);
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Chapter 5

Virtual File System

5.1 Introduction

The virtual file system, known as the “VFS,” provides a common interface
between the operating system kernel and the various file systems. The VFS
interface allows one to add many different types of file systems to one’s kernel
and access them through the same UNIX-style interface: one can access one’s
MS-DOS files via the vfat file system just as easily as one would access various
device drivers through the dev file system, kernel internal information through
the proc file system or standard on-disk files through the S5FS file system. For
instance, here are three examples of writing to a “file”:

$ cat foo.txt > /home/bar.txt

$ cat foo.txt > /dev/tty0

$ cat foo.txt > /proc/123/mem

All of these commands look very similar, but their effect is vastly different. The
first command writes the contents of foo.txt into a file on disk via the local file
system. The second command writes the contents to a terminal via the device
file system. The third command writes the contents of foo.txt into the address
space of process 123.

Polymorphism is an important design property of VFS. Generic calls to
VFS such as read() and write(), are implemented on a per-file system basis.
Before we explain how the VFS works we will address how these “objects” are
implemented in C.

5.1.1 Constructors

File systems are represented by a special type (a fs t struct) which needs to be
initialized according to its specific file system type. Thus for each file system,
there is a routine that initializes file system specific fields of the struct. The
convention we use in Weenix for these “constructors” is to have a function
called <fsname> mount() which takes in a fs t object. Note that the fs t to
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be initialized is passed in to the function, not returned by the function, allowing
us to leave the job of allocating and freeing space for the struct up to the caller.
This is pretty standard in C. Additionally, some objects have a corresponding
“destructor” <fsname> umount(). Construction does the expected thing with
data members, initializing them to some well-defined value. Destruction (if the
destructor exists) is necessary to clean up any other data structures that were
set up by the construction (such as freeing allocated memory, or reducing the
reference count on a vnode).

5.1.2 Virtual Functions

Virtual functions (functions which are defined in some “superclass” but may
be “overridden” by some subclass specific definition) are implemented in the
Weenix VFS via a struct of function pointers. Every file system type has its
own function implementing each of the file system operations. Our naming con-
vention for these functions is to prefix the function’s generic name with the file
system type, so for example the read() function for the s5fs file system would
be called s5fs read(). Every file system type has a struct of type fs ops t

which lists all of the operations which can be performed on that file system.
In the constructor for the file system, pointers to these fs ops t are added to
the fs t struct being initialized. One can then call these functions through the
pointers, and you have instant polymorphism.

5.1.3 Overview

This section describes how the VFS structures work together to create the vir-
tual file system.

Each process has a file descriptor table associated with it (the proc t field
p files). Elements in the array are pointers to open file objects (file t structs)
in a system-wide list of all file t objects that are currently in use by any pro-
cess. You can think of this as the system file table discussed in the “Operating
Systems Design” lectures. Each process’s array is indexed by the file descrip-
tors the process has open. If a file descriptor is not in use, the pointer for that
entry is NULL. Otherwise, it must point to a valid file t. Note that multiple
processes or even different file descriptor entries in the same process can point
to the same file t in the system file table. Each file t contains a pointer to
an active vnode t. Once again, multiple system file table entries can point to
the same vnode t. You can think of the list of all active vnote ts as the active
inode table discussed in the “Operating Systems Design” lectures. Through the
vnode t function pointers you communicate with the underlying file system to
manage the file the vnode represents.

With all of these pointers sitting around it becomes hard to tell when we can
clean up our allocated vnode ts and file ts. This is where reference counting
comes in.
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Reference Counting

As discussed in the overview of VFS, there are a lot of pointers to vnode ts and
file ts, but we need to make sure that once all of the pointers to a structure
disappear, the structure is cleaned up, otherwise we will leak resources! To
this end vnode t and file t both have reference counts associated with them,
which are distinct but generally follow each other. These reference counts tell
Weenix when a structure is no longer in use and should be cleaned up.

Rather than allocating space for these structures directly, the *get() func-
tions described below look up the structures in system tables and create new
entries if the appropriate ones do not already exist. Similarly, rather than di-
rectly cleaning these structures up, Weenix uses the *put() functions to decre-
ment reference counts and perform cleanup when necessary. Other systems
in Weenix use these functions together with the *ref() functions to manage
reference counts properly.

For every new pointer to a vnode t or a file t, it may be necessary to
increment the relevant reference count with the appropriate *ref() method if
the new pointer will outlive the pointer it was copied from. For example, a
process’s current directory pointer outlasts the method in which that pointer is
copied from the filesystem, so you must use vref() on the vnode t the filesystem
gives you to ensure the vnode t won’t be deallocated prematurely.

Note that you may have to add to your old Processes code in order to
properly manage reference counts.

Keeping reference counts correct is one of the toughest parts of the virtual file
system. In order to make sure it is being done correctly, some sanity checking
is done at shutdown time to make sure that all reference counts make sense.
If they do not, the kernel will panic, alerting you to bugs in your file system.
Below we discuss a few complications with this system.

Resident Page References

Because reading and writing data on a disk can be expensive operations to ini-
tiate, disk drivers do them in large chunks (usually block-sized). File systems
take advantage of this by caching data blocks in memory so that future reads
can access the data without going back to disk and future writes can be per-
formed in the cache (which is much faster than writing directly to the disk,
see the documentation on paging for information on how changes to the cache
get propagated to the disk). In Weenix, this caching is done by mmobj ts. Ev-
ery time a block is cached, it has a pointer to the vnode that “owns” its data
(and therefore adds to the vnode’s reference count). The vn nrespages field
of the vnode t structure keeps track of how many cached blocks belonging to
the vnode are currently resident in memory. Therefore when vn refcount -

vn nrespages = 0 the only pointers to a vnode are its cached blocks so Weenix
could safely uncache all blocks belonging to that vnode and then cleanup the
vnode; however, this is not the most efficient behavior.

It is possible that even if Weenix is not currently using a vnode it will need
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the vnode again in the near future. It would be a waste to uncache all of the
data already read into memory. Therefore the vput() will actually keep the
vnode and all of its cached data in memory (if the pageout daemon decides
to clean up all of the cached data before any new references to the vnode are
created, dropping the vnode’s reference count to zero, then the vnode will still
be properly cleaned up). However this brings up another complication. If a
file is deleted from disk (fully unlinked) and the vnode is only being referenced
by cached pages, then it is impossible for the VFS system to ever reference
that vnode again, so the call to vput() should uncache all pages and clean
up the vnode. For this reason the fs ops t structure provides a query vnode

function which vput() uses to ask the file system implementation if a file has
been deleted.

Mount Point References

If mounting is implemented then the vnode’s structure contains a field vn mount

which points either to the vnode itself or to the root vnode of a file system
mounted at this vnode. If the reference count of a vnode were incremented
due to this self-reference then the vnode would never be cleaned up because its
reference count would always be at least 1 greater than the number of cached
data blocks. Therefore the Weenix convention is that the vn mount pointer does
not cause the reference count of the vnode it is pointing to to be incremented.
This is true even if vn mount is not a self-reference, but instead points to the root
of another file system. This behavior is acceptable because the fs t structure
always keeps a reference to the root of its file system. Therefore the root of a
mounted file system will never be cleaned up.

It is important to note that the vn mtpt pointer in fs t does increment
the reference count on the vnode where the file system is mounted. This is
because the mount point’s vnode’s vn mount field is what keeps track of which
file system is mounted at that vnode. If the vnode where to be cleaned up while
a file system is mounted on it Weenix would lose the data in vn mount. By
incrementing the reference count on the mount point’s vnode Weenix ensures
that the mount point’s vnode will not be cleaned up as long as there is another
file system mounted on it.

Mounting

Before a file can be accessed, the file system containing the file must be “mounted”
(a scary-sounding term for setting a couple of pointers). In standard UNIX, a
superuser can use the system call mount() to do this. In your Weenix there is
only one file system, and it will be mounted internally at bootstrap time.

The virtual file system is initialized by a call to vfs init() by the idle
process. This in turn calls mountproc() to mount the file system of type
VFS ROOTFS TYPE. In the final implementation of Weenix the root file system
type will be s5fs, but since you have not implemented that yet you will be us-
ing ramfs, which is an in-memory file system that provides all of the operations
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of a S5FS except those that deal with pages (also, ramfs files are limited to a
single page in size).

The mounted file system is represented by a fs t structure that is dynami-
cally allocated at mount time.

Note that you do not have to handle mounting a file system on top of an
existing file system, or deal with mount point issues, but you may implement it
for fun if you so desire, see the additional features section.

5.1.4 Getting Started

In this assignment, as before, we will be giving you a bunch of header files and
method declarations. You will supply most of the implementation. You will be
working in the fs/ module in your source tree. You will be manipulating the
kernel data structures for files (file t and vnode t) by writing much of UNIX’s
system call interface. We will be providing you with a simple in-memory file
system for testing (ramfs). You will also need to write the special files to
interact with devices.

Remember to turn the VFS project on in Config.mk and make clean your
project before you try to run your changes. As always, you can run make nyi

to see which functions must be implemented.

The following is a brief check-list of all the features which you will be adding
to Weenix in this assignment.

• Setting up the file system: fs/vfs.c - fs/vnode.c - fs/file.c

• The ramfs file system: fs/ramfs/ramfs.c (provided in the support code)

• Path name to vnode conversion: fs/namev.c

• Opening files: fs/open.c

• VFS syscall implementation: fs/vfs syscall.c

Make sure to read include/fs/vnode.h, include/fs/file.h, and include/fs/vfs.h.
You will also find some relevant constants in include/config.h.

You can wait until the VM project to implement the special file functions
which operate on pages.

5.2 The ramfs File System

The ramfs file system is an extremely simple file system that provides a basic
implementation of all the file system operations except those that operate on a
page level. There is no need for the page operations until VM, by which point
you will have implemented S5FS. Note that ramfs files also cannot exceed one
page in size. All of the code for ramfs is provided for you.
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5.3 Pathname to vnode Conversion

At this point you will have a file system mounted, but still no way to convert
a pathname into the vnode associated with the file at that path. This is where
the fs/namev.c functions come into play.

There are multiple functions which work together to implement all of our
name-to-vnode conversion needs. There is a summary in the source code com-
ments. Keeping track of vnode reference counts can be tricky here, make sure
you understand exactly when reference counts are being changed. Copious com-
menting and debug statements will serve you well.

5.4 Opening Files

These functions allow you to actually open files in a process. When you have
open files you should have some sort of protection mechanism so that one process
cannot delete a file that another process is using. You can do that either here
or in the S5 layer. Although the choice is up to you, it is somewhat easier to do
it in the S5 layer and not worry about it here.

5.5 System Calls

At this point you have mounted your ramfs, can look up paths in it, and open
files. Now you want to write the code that will allow you to interface with your
file system from user space. When a user space program makes a call to read(),
your do read() function will eventually be called. Thus you must be vigilant
in checking for any and all types of errors that might occur (after all you are
dealing with “user” input now) and return the appropriate error code.

Note that for each of these functions, we provide to you a list of error con-
ditions you must handle. Make sure you always check the return values from
subroutines. It is Weenix convention that you will handle error conditions by
returning -errno if there is an error. Any return value less than zero is assumed
to be an error. Do not set the current thread’s errno variable or return -1 in the
VFS code, although these behaviors will be presented to the user. You should
read corresponding system call man pages for hints on the implementation of
the system call functions. This may look like a lot of functions, but once you
write one system call, the rest will seem much easier. Pay attention to the com-
ments, and use debug statements. For more information on error handling, see
the S5FS Error Handling section.

5.6 Testing

You should have lots of good test code. What does this mean? It means that
you should be able to demonstrate fairly clearly – via TTY I/O and debug state-
ments – that you have successfully implemented as much as possible without
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having S5FS yet. Moreover, you want to be sure that your reference counts are
correct (when your Weenix shuts down, vfs shutdown() will check reference
counts and panic if something is wrong). Note that you must make sure you are
actually shutting down cleanly (i.e. see the “Weenix halted cleanly” message),
otherwise this check might not have happened successfully. Basically, convince
yourself that this works and get ready for the next assignment – implementing
the real file system.

We have written some tests for you which you can run from your main
process by calling vfstest main, which is defined in test/vfstest/vfstest.c.
Be sure to add a function prototype for vfstest main at the top of the source
file where you call the function. Note that the existence of vfstest is not an
excuse for not writing your own tests.
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Chapter 6

System V File System

6.1 Introduction

The System V File System, or “S5FS,” is a file system based on the original
Unix file system. Although it lacks some of the complex features of a modern
file system, Weenix uses it because it provides an excellent introduction to the
issues involved in writing an on-disk file system.

In completing the S5FS assignment, you will provide its implementation for
the full VFS interface. You will come across many different S5FS objects that
interact with each other. Most of these object types are on-disk data structures
– that is, the memory they occupy is actually being saved to disk (the only
S5FS type which is not backed by disk is the struct representing the file system
itself).

Remember to turn the S5FS project on in Config.mk and make clean your
project before you try to run your changes.

0 1 9 1024
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ck

inodes
(32 per block) data blocks

Figure 6.1: The default disk layout for Weenix.
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6.2 Disk Layout

6.2.1 Superblock

The first block of the disk (block number zero) is called the superblock, which
contains metadata about the file system. The important data fields inside it are
the inode number of the root directory, the number of the first free inode, the
first section of the free block list, the number of free blocks currently referenced
in that section of the free block list, and the total number of inodes in use by
the filesystem. The less important fields are the “magic number” for S5FS disks
(used as a sanity check for the OS to determine that the disk you are reading is
formatted as an S5FS disk), and the version number of S5FS we are using. The
in-memory copy of the superblock is stored in a s5 super t struct. For more
information about the structure of the free block list, check out the section on
data blocks below.

6.2.2 Inodes

Next, there is an array containing all the inodes for the file system. Each inode
requires 128 bytes of space, and each disk block is 4096 bytes, so we store
32 inodes per block. Inodes are referred to by their index in the array, and
are stored in memory as s5 inode t structs. Each inode is either free, or it
corresponds to some file in the file system.

If an inode is not free, it represents a file presently on disk. The inode holds
of the size of the file, the type of the file (whether it is a directory, character
device, block device, or a regular file), the number of links to the file from other
locations in the file system, and where the data blocks of the file are stored on
disk.

If an inode is free, it need only be marked as empty and contain the inode
number of the next free inode in the free list (or -1 if it is the last element in
the list). This link is stored in the s5 freesize field (you can think of that field
as being a union whose interpretation depends on whether the inode is free or
not).

The link count on an inode has a slightly different meaning based on whether
or not Weenix is currently running. If Weenix is shut down, the link count simply
reflects the number of directory entries which point to this file. However, while
the OS is running, calling vget() on some file for the first time will result in a
call to S5FS’s implementation of read vnode(), which will increment the link
count of the inode by one as long as the file is referenced by a vnode. Note
that the link count will only be incremented when the file is first read from
disk, not every time vget() is called on that file. Once the vnode’s reference
count drops to zero, the call to vput() will call S5FS’s implementation of the
delete vnode() function, which will decrement the link count of the inode.
This extra link count is used to prevent the inode from being deleted from disk
as long as some vnode still references it (even if the file has been unlinked from
disk) so that any process that is using the file should have no problem reading
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Figure 6.2: An inode with an indirect block (data blocks not pictured).

it. As such, the link count for a new file should be two: one link from its
parent directory and one from Weenix. Note that this is slightly different for
directories; see the section on directories for details.

As mentioned above, the location of the data blocks for a file are also stored
in the inode for the file. The inode itself keeps track of S5 NDIRECT BLOCKS data
block numbers directly, but this is not usually enough for a large-ish file. Luckily,
S5FS inodes for “large” files also contain a pointer to an indirect block, which
is a disk block filled with more data block numbers (in case it isn’t clear: by
“pointer” in this context we mean a disk block number, not a memory address).
It is able to store up to S5 BLOCK SIZE / sizeof(int) more block numbers.
In a production file system, you should be able to support arbitrarily long files,
which would require arbitrarily long indirect block chains (or, more likely, B-
trees), but in Weenix we choose to only implement a single indirect block for
simplicity. This means that there is a maximum file size; make sure you handle
this error case correctly.

While the default disk size gives you space for several hundred data blocks,
the indirect block will allow a single file to use thousands of blocks. This might
seem unnecessary, however it allows for the implementation of sparse files. If a
file has a big chunk of zeros in it, Weenix will not waste actual space on the disk
to represent them; it just sets the block index to zero. When reading a file, if
a block number of zero is encountered, then that entire block should consist of
zeroes. Remember that zero is guaranteed to be an invalid data block number
because it is the block number of the superblock.
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Figure 6.3: The free block list.

6.2.3 Data Blocks

Data blocks are where actual file contents are stored. They occur on disk after
the inode array and fill the remainder of the disk. For simplicity, disk blocks
and virtual memory pages are the same number of bytes in Weenix, although
this is not necessarily true for other operating systems.

The contents of the data blocks are obviously dependent on what file they
are filled with (except for directories, which also use data blocks but have a
special format described below) unless they are in the free block list. Instead of
a free list where each link only points to one more link, which would be wildly
inefficient due to frequent seek delays, S5FS uses a list where each link in the list
contains the numbers of many free blocks, the last of which points to the next
link in the free list. The first segment of the free list is stored in the superblock,
where up to S5 NBLKS PER FNODE blocks are stored. The last element of this
array is a pointer to a block containing S5 NBLKS PER FNODE more free blocks,
the last of which is a pointer to a block with more free pointers, and so on. The
last free block in the list has a -1 in the last position to indicate there are no
more free blocks. After the second-to-last free block in the superblock’s array
is used, the next set of free blocks should be copied out of the next block, and
then the block they were just copied from can be returned as the next free page.

6.2.4 Directories

S5FS implements directories as normal files that have a special format for their
data. The data stored in directory files is essentially just a big array of pairs
of inode numbers and the filenames corresponding to those inode numbers.
Filenames in S5FS are null-terminated strings of length less than or equal to
S5 NAME LEN (including the null character). Any entry with a zero-length name
indicates an empty or deleted entry. Note that every directory contains one
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entry for “.” and one for “..”, corresponding to the current directory and the
parent directory, respectively, from the beginning of its existence to the moment
it is deleted. The link count for a newly-created directory should be two (one
reference from its parent directory, and one from the running copy of Weenix
that just created it). The convention for weenix is that the self-reference from
a directory to itself (.) is not counted towards the link count.

6.3 Caching

At this point, you know a lot about how the on-disk filesystem looks and could
probably inspect the disk block-by-block and understand what files are stored
there. However, while working on this part of Weenix, you will not need to
directly read and write from the disk, even in the most low-level functions.
Instead, you will use the VM caching system to read blocks from disk into
memory. You can then manipulate these pages in memory, and the pageout
daemon will automatically handle writing them back to disk.

The Weenix caching system uses two different types of objects: page frames,
which are each responsible for tracking one page/block of data, and memory
objects, which are each associated with a number of page frames that hold the
data for that memory object. In the codebase, the names for these objects
are pframe ts and mmobj ts, respectively. Each memory object represents some
data source, which could be a file, device, or virtual memory region. This means
that page frames are used to reference the blocks of files, blocks of a device, and
blocks of segments of memory. Specifically, page frames store some metadata
about the page they hold and a reference to that page in memory. If a particular
page of, say, a file hasn’t been paged into memory, there will not yet be a page
frame for that page.

To get a particular page frame from a memory object, you should call
pframe get() on the memory object you wish to get the page from. The data
stored in the page is stored at the location pointed to by the page frame’s
pf addr field. When a page frame has been modified, you should mark it as
dirty so that it will be cleaned (the changes will be written back to disk) if
necessary. The cleaning process uses callbacks in the disk’s memory object to
write the data back to disk.

To use an inode from disk, you must get its page from the disk memory
object (the S5 INODE BLOCK() macro will tell you which disk block to get) and
then use the S5 INODE OFFSET() macro to index into the page. When you are
changing a file or the filesystem data structures, make sure that you remember to
dirty the indirect block, inode, and superblock if necessary. Note the presence of
the s5 dirty inode() and s5 dirty super() calls for this purpose. Remember
that you should never clean pages yourself as either the pageout daemon or the
Weenix shutdown sequence will take care of that automatically.

While working on S5FS, you may notice that there are two very similar
methods for accessing the data on disk: calling pframe get() on the memory
object for the block device (the disk) and on the memory object for the file.
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Therefore, it can sometimes be confusing which one to use. Although this may
sound like common sense, it is important that you use a file’s memory object
every time you are dealing with a file, and use the block device’s memory object
when you are implementing pieces of the filesystem that are “low-level enough”
to know how a file is split across multiple blocks on disk. If you accidentally use
the disk memory object instead of the file memory object, you will be short-
circuiting a couple layers of abstraction that will be necessary later on.

6.3.1 Page Frame States

As alluded to above, there are several states which a page frame can be in. At
boot time, all page frames are free, meaning they are waiting to be allocated.
Some of the page frames will eventually be allocated, at which point they are
added to the allocated page frame list and filled with data. If a change is made
inside their associated page of memory, they should be marked as dirty.

The allocated page frame list is maintained to ease the implementation of
the pageout daemon, which traverses the list and frees page frames and their
associated memory pages. Note that any dirty pages will be cleaned (written
out to disk) during this step, and non-dirty pages will simply be freed. The
pageout daemon should only run when the system is out of memory, although
you are allowed to call it other times as well if you choose. However, the use
of the pageout daemon raises the question: how will you prevent a page frame
from being freed while you are using it?

To solve this potential issue, page frames can also be pinned while they are
in use. Pages can be pinned multiple times; as long as the pin count of a page
frame is greater than zero, it is guaranteed not to be cleaned or freed. This
will also be important when you implement virtual memory, since page frames
for some types of virtual memory regions will not be backed by disk and can
therefore never be safely cleaned or freed. When a page is pinned, it is removed
from the allocated frame list and added to the pinned list, and the reverse
happens when the last pin is removed.

The only time during S5FS where you should pin pages is when it is possible
that your code will block after finding a page frame and before using that frame,
since those are the conditions under which the pageout daemon could free the
page, causing a memory corruption bug that will be difficult to reproduce. If
you are unsure whether some code path might block, it is safer to pin any page
frames you are using than not to do so. When you are done using the page
frames, make sure you unpin them so that you do not run out of memory.

Finally, to protect page frames from making ill-formed state transitions, page
frames can be marked as busy while they are in the middle of a state transition.
Any concurrent attempts to modify a page frame (not necessarily the page it
points to) should block until it is no longer busy.
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6.3.2 Lazy Cleaning

One noteworthy feature of Weenix’s caching system is that it does not uncache
any pages of a file until either the system is out of memory (the pageout daemon
may write back some or all of the changes at this point) or Weenix shuts down
(the page frame system writes back its changes). This feature was added to
improve cache performance for files that are closed and reopened frequently.

Each time vput() is called on a file, the S5FS implementation of query vnode()

is run to check if the file is still referenced by some directory on disk or some
vnode in memory. If it has been deleted from every directory it was present in
and you are vput()ing the final memory reference to the file, the blocks of that
file that are cached in memory can simply be freed (even if they are dirty) since
nobody will ever need to use them again. Otherwise, they are left to be cleaned
up at some later point. If you notice that your filesystem is working but none
of your changes are being propagated to disk, you may want to check to see if
this code path is running.

6.4 Error Handling

You always need to check for things that can go wrong. When an error condition
occurs, you should return -errno where errno is the error number that indicates
the type of error that occurred. For example, if you run out of free data blocks
when attempting to write to a new block of a file, you should return -ENOSPC.
You should always check the return value from non-void functions you call, and
if the returned value is negative you often need to propagate it up. Returning
-1 or setting the current thread’s -errno variable is not correct.

However, it is also important that your VFS code check for as many errors
as possible, so that each file system that it runs need not check the same error
cases. If you know that some error condition should always be dealt with at the
VFS layer, you should assert that it does not occur in the S5FS layer to identify
bugs in your implementation while you develop.

We have tried to indicate some errors that you should check for in the com-
ments, but we have probably not mentioned all of them, so you should go over
your code thoroughly to make sure that you handle all possible errors.

6.5 Getting Started

You need to implement:

• The high-level system calls for S5FS (the VFS interface). Many of these
will have a name such as s5fs [name] with a corresponding VFS call
named do [name].

• The low-level subroutines. These subroutines represent common function-
ality that may be useful to reuse in many of the high-evel system calls.
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• A few memory management routines (such as pframe get()). This is to
understand a little better how the caching system works.

6.6 Testing

Your test cases should demonstrate clearly that all functions have been tested
properly. While much of the functionality of S5FS will be tested by the tests
you used for VFS, there are several cases that may require a bit more thought:

• Indirect blocks. (The hamlet file on your virtual disk is provided as an
example of a file which needs an indirect block, but don’t forget to check
the case where you need to allocate one at runtime as well.)

• Sparse blocks.

• Running out of inodes, data blocks, or file length.

• Shutting down and rebooting does not erase your changes.

We have written some tests for you which you can run from your main process
by calling s5fs test main, which is defined in test/s5fs test.c. Note that
the existence of these tests is not an excuse for not writing your own tests.

Be sure that your link counts are correct (calculate refcounts() will cal-
culate the counts for you). Note that you must make sure you are actually
shutting down cleanly (i.e. see the “Weenix halted” message). Reference count
issues will prevent Weenix from shutting down cleanly.

To ease the difficulty of debugging your file system code, we have provided
a couple of utilities to help you develop. The fsmaker utility will come in
handy for inspecting blocks, inodes, and other data structures on your virtual
machine’s disk. To read more about how to use fsmaker, run fsmaker --help

from the root of your development directory. Your disks are stored in files on
the host operating system (the user/disk*.img files), and must be passed to
fsmaker as an argument. Also, running the ./weenix script with the -n option
will create a brand new disk for you and fill it with a bunch of sample files and
directories. To begin this assignment, you must use this option at least once,
otherwise you will not have a disk to work with.
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Virtual Memory

7.1 Introduction

At this point, your Weenix contains a threading library, some thin wrappers
around device drivers, and basic file system support with a caching layer. By
the end of this assignment, Weenix will be a full operating system. With
the addition of virtual memory, your kernel will start managing user address
spaces, running user-level code, and servicing system calls. After completing
this project, everything you did before will seem insignificant.

This assignment is substantial, and also very prone to difficult bugs. Before
you begin, make sure the rest of your kernel is functioning exactly as you expect.
You will undoubtedly uncover bugs in old code throughout the course of this
assignment, but minimizing the number you find before you start will be helpful.
Make sure to start early and ask questions frequently; it is very easy to get lost
in this assignment.

Remember to turn the VM project on in Config.mk and make clean your
project before you try to run your changes.

Because VM bugs can spring up in code you wrote months ago, this is where
you will probably find out whether or not your implementations of the previous
assignments are up to par. We would like to point out that there are several
Weenix- and OS-specific debugging tools and techniques in Appendix C which
will be extremely useful if you have not been using them so far.

7.2 Virtual Memory Maps

The first thing you should do in this assignment is write the code for managing
a process’ virtual address space. The virtual address space for a process (also
known as its “memory map”) is stored as a linked list of virtual memory areas
(also referred to as “memory regions”), each of which correspond to some mem-
ory object which provides pages of memory to the process on demand. As you
have likely already realized, this means that everything from files to disks can

49
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be mapped into the address space of Weenix processes, and it should now make
even more sense why we used memory objects extensively in the last assignment
instead of reading and writing directly to disk. Of course, some memory areas
will not correspond to existing data (the stack and heap, for instance). We will
explain how that works in the section on anonymous objects.

In order to manage address spaces, you must maintain each process’ list of
virtual memory areas. Each memory region is essentially a range of virtual page
numbers, a memory object, and the page offset into that memory object that
the first page of the virtual memory area corresponds to. Make sure that you
understand why these numbers are all stored at page resolution instead of byte
(address) resolution. You must keep the areas sorted by the start of their virtual
page ranges and ensure that no two ranges overlap with each other. There will
be several edge cases (which are better documented in the code) where you will
have to unmap a section of a virtual memory area, which could require splitting
an area or truncating the beginning or end of an area.

While there is very little conceptually difficult code to write in this section
of the assignment, off-by-one bugs are extremely common and become very
difficult to track down later on, so unit-testing this code is a good idea.

7.3 Page Fault Handler

After your memory maps are working, you will need a way to actually load the
data into memory when a process attempts to access it. This is done by the
page fault handler. The page fault handler is triggered by a processor interrupt
when a process attempts to access an address for which it has no lookup entry in
the page table or the permissions on that entry do not allow the type of access
that is being attempted.

At this point in the project, any page faults that have occurred have resulted
in a kernel panic. That is because Weenix does not support kernel-level page
faults, meaning that the entire kernel address space must reside in memory at
all times. This functionality is written into a wrapper for the page fault handler
you will write which short-circuits kernel page faults. More details on how this
function works can most easily be found in the code.

The combination of the page fault handler and the virtual memory maps
should be enough to get a very simple page fault to occur in a userland program.
At this point, you can set up a userland program to run from inside the init

process by running kernel execve(), passing the path to any program on your
(virtual) disk as an argument. Similar to the exec() system call, this will replace
the memory map of the current process to set up another program to run, but
it will be better than exec() in this case because the setup is done exclusively
in kernel space, so it can be used before you have a fully functional userspace.
When the program begins, it should cause a page fault to be generated. This is
your first step towards having a functional userland.

A simple implementation of the page fault handler will be enough to start
with, but eventually this will be a relatively logic-heavy function. First, the page
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fault handler should search for the virtual memory area containing the address
that was faulted on. Then, the permissions of this area should be checked against
the flags variable that is passed to the handler, which tells the handler whether
the attempted access is a read or a write. If the memory area containing the
accessed page is not found or the permissions would make this access illegal,
the current process is killed with an exit status of EFAULT. Of course, if Weenix
supported UNIX signals, it would send a SIGSEGV signal instead.

Once the virtual memory area is found, Weenix must search for the missing
page and map it into the page table of the current process so that the access
can be retried using the virtual address of the page that’s being added and the
physical address where it resides. Fetching the missing page will require a lot of
help from the page frame caching system, namely for looking up the page and
dirtying it if the access is a write. This, in turn, will rely on two new types of
memory objects you will need to implement.

7.3.1 The Memory Management Unit

In order to map the virtual address to its corresponding page of memory, you will
need to use the page table functions. A good portion of memory management
is done for you, but you will have to fill in page table entries when page faults
occur, flush the translation lookaside buffer (TLB) when necessary, and manage
copy-on-write pages yourself. You will also need to make sure that pages which
are not backed by files remain pinned, so they do not get paged out by accident.

7.4 Memory Management

As you have implemented it currently, the caching layer of Weenix works ex-
clusively for pages of files or disks that have been mapped into memory. You
will extend it by creating memory objects which will provide two new types of
memory which are not backed by any on-disk structures.

7.4.1 Anonymous Objects

So far, you have used the memory objects of your block device and files to fill
page frames as you needed data from disk, but it does not make sense to back
some virtual memory areas, such as a process’ stack, with data on disk. What
you often want is objects which initialize pages by filling them with zeroes and
pin their pages in memory as long as the process is using them. These are known
as anonymous objects since they are not backed by any persistent data (which
would have a filename associated with it). Anonymous objects are relatively
simple to implement, so look for a better description of how they work in the
code comments.

Notably, anonymous objects cannot be paged out in Weenix. The designers
chose not to implement this feature because memory pressure will rarely be an
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issue in your operating system, and implementing a swap space is not terribly
interesting or vital to implement as a result.

7.4.2 Shadow Objects

Anonymous objects are easy to implement, however you will also need a much
more sophisticated form of memory object called a shadow object to implement
fork(). These will be used to implement copy-on-write for privately-mapped
blocks that are accessed after forking. Because of how involved shadow objects
must be, you should refer to lecture slides or the book for more general informa-
tion about how and why they are used. The rest of this section will only cover
how to implement them in Weenix.

To implement shadow objects, it will be extremely helpful to understand how
the methods of memory objects are called during a page lookup or dirty opera-
tion. If you don’t remember this well from the last assignment, we recommend
that you go back and either re-read the relevant sections of the last assignment
or search through the code paths in question and draw a graph showing what
functions in the page frame system call what functions in the related memory
objects.

The main difference between shadow objects and other types of memory
management objects is that shadow objects can be part of arbitrarily long chains
of memory objects. Therefore, many calls to shadow objects will be rerouted to
the object that is being shadowed, or occasionally to the root object in a tree
of memory objects, which cannot be a shadow object. At a high level, this is
similar to how file memory objects forward requests to the disk memory object,
but in practice it ends up seeming a lot more recursive when implementing
shadow objects since there is no translation layer as there was between file block
numbers and disk block numbers. However, shadow objects are still responsible
for storing some data and, more importantly, causing copy-on-write to work
after a fork() has taken place.

One potential problem with shadow objects is that the chains must be
cleaned up when the process that creates them exits to avoid temporary memory
leaks. Ideally, this could happen at process exit. A process exiting might cause
a shadow object’s refcount to drop to one, at which point the pages attached
to the object could be reassigned to the single shadow object beneath it, and
the object itself could be deallocated. However, this would require the shadow
object to know what its remaining child is and, at the moment, shadow objects
do not maintain a list of their children.

This apparent design flaw leaves two other avenues for shadow chain cleanup.
First, there is a shadow daemon known as shadowd which was built for this
purpose. It should be invoked when the kernel is out of memory (this code is
already written) or when a shadow object which can be cleaned up is created
(you can tell this by checking for it when you remove either of its child shadow
objects). To enable the shadow daemon, just set SHADOWD=1 in the project
environment settings. The shadowd code exists as a testing tool, but you should
not use it for your final product.
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The second method would be to collapse shadow chains during fork(). This
requires a relatively easy traversal of the forking process’ object chains, where
you shift the pages from any objects with a single child down to their child and
then deallocate the objects. You should implement this for your final product
inside your fork logic.

7.5 System Calls

System calls are the only way user processes can communicate with the Weenix
kernel directly. The way that system calls are generated from user space is
by generating a software interrupt (using the x86 int instruction) with the
arguments to the system call stored in the registers or on the stack. This
causes an interrupt in the kernel, where the number in an agreed-upon register
designates which system call is being used, and then the corresponding system
call function is actually called to handle the request after the arguments have
been parsed out of their registers. Most of the system calls have already been
written for you, however, in order to give you some understanding of the process
involved, you will need to write a few yourself.

7.5.1 Kernel System Call Interface

You will need to implement the kernel targets for read(), write(), and getdents().
While most of what you need to do should be pretty self-explanatory after read-
ing through other system call implementations, you must also write two helper
functions to check accesses to user memory from within the kernel.

7.5.2 Accessing User Memory

The code to handle traps and access user memory from the kernel has been
written for you. However, many of these functions need to check to see if a
region of user memory is a valid section of the process’ address space. To check
this, you will need to implement addr perm() and range perm(), which will
rely on your virtual memory map code.

7.5.3 Running Userland Programs

Once you have implemented the page fault handler, anonymous objects, and
write(), you should be able to run a variety of simple user-level programs. Of
course, the first you should try to get running should also be one of the simplest,
so we recommend hello, which should print “Hello, world!” to the screen. To
run correctly, this will require a mostly-functional page fault handler to fill in
pages as the process attempts to access them; otherwise, the operating system
will probably go into an infinite loop, trying to access the same address over
and over using the page fault handler, but never adding the correct entry to
the page table. Some other simple programs that you should be able to run are
args and uname.
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If you are having trouble getting hello to run and suspect that your anony-
mous object or write() implementations might be at fault, you should try the
segfault program instead and ensure that it exits with a status of EFAULT.
If it doesn’t (if, for instance, you run into the infinite loop problem described
above), this means the bug is probably in your page fault handler.

After getting hello or segfault running, congratulations! You’ve just got-
ten your first userland program working! Celebration techniques are myriad,
but we recommend dancing around a bit, and maybe taking a shower.

At this point, it will be useful to look at the debugging appendix covering
how to inspect the progress of a user-level process using a debugger. Although
you may not need it yet, we assume that you will want it very soon.

7.5.4 VM-Related System Calls

After you get some initial test programs running, you can start to think about
implementing a variety of VM-related system calls. For the functions in this
section, we recommend that you check out the documentation in the man pages
for more information.

mmap() and munmap() are the most simple and obvious of the functions
in this category. They allow user processes to map files into memory, create
private or shared memory regions, and remove areas of their address space. The
majority of these functions will end up being error-checking, since you wrote
the main logic for them in the virtual memory map code. Note that the Weenix
memtests expect you to use the VMMAP DIR HILO flag.

brk() is similar in conceptual difficulty. Calling brk() changes the length of
the memory region acting as the heap, but the pointer passed as an argument to
brk() is not required to lie on a page boundary, and the beginning of the heap
sometimes starts halfway through the last page of another memory region. This
means that the edge cases for brk() can be a bit annoying, but there’s nothing
conceptually difficult to grasp here. There are some robust user-level tests for
much of this functionality, so rather than spending a lot of time getting it right
before testing, we recommend starting with something naive and gradually fixing
it to pass the tests after you can run them in userland.

7.6 fork()

Although it is also a VM-related system call, fork() is an entirely different
animal from mmap() and friends. A good implementation of the previous sections
is essential; fork() is complicated enough without having to debug the rest
of your VM code at the same time. The man pages, while useful as always,
will not be as helpful for fork() as for the other system calls, so most of the
documentation for fork() is given here.

fork() is a moderately complicated system call. We present it here as one
long algorithm, but it will make your life much easier if you break it down into
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separate subroutines. Close attention to detail will help you; an under-debugged
fork() can cause subtle instabilities and bugs later on.

Bugs in the virtual memory portion of fork() tend to cause bizarre behavior:
user process memory may not be what it ought to be, so almost anything can
happen. The user process may end up executing what should be data, jumping
into the middle of a random subroutine, etc. These sorts of bugs are very
difficult to track down. For this reason, you should code more defensively than
you may be used to. Assert everything you can, panic() at the first sign of
trouble, and include apparently unnecessary sanity checks.

Above all, be sure you really understand the algorithm before you start
coding. If you try to implement it before you understand what you are trying
to do, you will write buggy code. In all likelihood you will then forget that you
have written buggy code, and waste time debugging code that you should have
thrown away. We know this because it has happened to us.

Note that these steps are not all in the correct order; consider the order in
which you do them, keeping in mind what kind of cleanup you will need to do
if one of them fails. Look out for steps which cannot be undone.

• Create a new process using proc create().

• Copy the vmmap t from the parent process into the child using vmmap clone()

(which you should write if you haven’t already). Remember to increase
the reference counts on the underlying memory objects.

• For each private mapping in the original process, point the virtual memory
areas of the new and old processes to two new shadow objects, which in
turn should point to the original underlying memory object. This is how
you know that pages corresponding to this mapping are copy-on-write. Be
careful with reference counts. Also note that for shared mappings, there
is no need to make a shadow object.

• Unmap the userland page table entries and flush the TLB using pt unmap range()

and tlb flush all(). This is necessary because the parent process might
still have some entries marked as “writable”, but since we are implement-
ing copy-on-write we would like access to these pages to cause a trap to
our page fault handler so it can dirty the page, which will invoke the
copy-on-write actions.

• Set up the new process thread context. You will need to set the following:

– c pdptr - the page table pointer

– c eip - function pointer for userland entry()

– c esp - the value returned by fork setup stack()

– c kstack - the top of the new thread’s kernel stack

– c kstacksz - size of the new thread’s kernel stack
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• Copy the file table of the parent into the child. Remember to use fref()

here.

• Set the child’s working directory to point to the parent’s working directory.
Once again, don’t forget reference counts.

• Use kthread clone() (which you should write if you haven’t yet) to copy
the thread from the parent process into the child process.

• Set any other fields in the new process which need to be set.

• Make the new thread runnable, which will add it to the run queue.

Remember that the only difference between the parent and child processes is
the return value of fork(). By 32-bit x86 convention, this value is returned in
the eax register, which should be set in the context values of both threads. You
should also revisit your implementation of the proc exit() function to make
sure that your implementation is releasing all resources it should.

Note that a simpler, less correct implementation of fork() can function
without actually using shadow objects, as long as you don’t care what happens
to whichever process (parent or child) wakes up last from the syscall. If you’re
having trouble getting shadow objects to work correctly, you can write fork()

without them for testing purposes.

7.7 Odds and Ends

Finally, there are a number of other functions which you might remember seeing
in earlier assignments spread throughout the kernel which you need to find
and either write or update. These functions are all fairly small, but if you
miss one, some things will break. Two examples are special file mmap() and
proc kill all(). Once you get the last of these finished, you should be able
to test your kernel with any binary file you find on the Weenix file system.

7.8 Testing

Testing your code at this point becomes rather difficult, since you must be
able to create data and text in user land and execute it. This is an order of
magnitude more difficult than creating kernel-mode threads as you have in past
assignments. Thankfully most of the gory details have been taken care of for
you (take a look at kernel/api/elf32.c and user/ld-weenix/ if you are a
masochist).

7.8.1 Userland Tests

Once you have functioning userland execution and a working fork() function,
you are ready to complete your Weenix system by running the userland binaries
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we provide for you. All you need to do is call kernel execve() in your init
process. You should execute the binary /sbin/init, which should start 3 shells
(one in each terminal window). These shells will allow you to execute any of
the provided binaries (roughly in order of difficulty):

• /usr/bin/segfault - Even simpler than hello, this should just segfault
on address 0x0. Good if you’re having a lot of trouble getting hello to
run.

• /usr/bin/hello - A simple “Hello world!” test. Getting this to execute
properly should be a big step in VM.

• /usr/bin/args - Prints command arguments.

• /usr/bin/forktest - Simple program which forks, and prints out every-
thing of note.

• /bin/uname - Prints system information.

• /bin/stat - Prints information about a file.

• /usr/bin/kshell - Traps into the kernel and starts a kshell.

• /bin/ls - List the contents of a directory.

• /sbin/halt - Kills all processes and shuts the system down.

• /usr/bin/wc - Counts characters, words and lines.

• /bin/hd - Dumps input in hexadecimal.

• /bin/sh - The shell itself. Yay subshell fun!

• /usr/bin/spin - Executes “while(1);”.

• /usr/bin/forkbomb - A forkbomb test which should theoretically run
forever.

• /usr/bin/stress - A test to stress various parts of your system and then
run a forkbomb.

• check - Contains checks for various test cases (this is a shell built-in
command).

• /usr/bin/vfstest - Lots of VFS tests (error conditions, etc.).

• /usr/bin/memtest - Lots of memory management tests (mmap and brk).

• /usr/bin/eatinodes - Devours filesystem resources.

• /usr/bin/eatmem - Devours kernel memory.

• /bin/ed - ed is the standard text editor.

The shell also has a bunch of builtins. Type help in a shell to see a list of
them. In particular, repeat and parallel can be very useful for stress testing
your kernel.
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7.8.2 A Relatively Difficult Test Suite

In addition to just having commands which work individually, you should be
able to stress the hell out of your system. Run lots of difficult commands
(forkbomb, eatmem, etc.) simultaneously, use different terminals at once, halt
in the middle of all this, and so on. This type of testing can frequently be quite
random, so here is a more systematic list of some things you can try. Make sure
you start with a fresh disk.

• cat hamlet

• cat hamlet > hamlet2

• halt (to shut down, then make sure the changes still exist on disk when
you reboot)

• rm hamlet

• cat /dev/null > foo

• ln foo bar

• cat README > foo

• cat bar

• check all (do this three or four times in a row)

• vfstest

• memtest (do this three or four times in a row)

• parallel vfstest -- vfstest

• parallel memtest -- memtest

• vfstest and then halt while running (use repeat to re-run vfstest if it
finishes too quickly)

• memtest and then halt while running

• forkbomb and then halt while running

• forkbomb and then eatmem

An easy way to make these tests harder is to check the kernel memory
allocators for any leaks. See the debugging appendix to see how to do this. You
may also want to test what happens when Weenix runs out of disk data blocks.
To do this, set the DISK BLOCKS variable to 2048 if it is not already, and then
re-run Weenix with a fresh disk and execute the commands below.

• cat hamlet >> hamlet (this should reach the maximum file size and then
exit)
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• vfstest (this should work - the disk is not yet filled)

• cat README >> README (this should fill the disk but not quite reach the
maximum file size)

• vfstest (this should fail to run most of the tests due to no disk data
blocks being available)

7.8.3 Dynamic Linking

Once you feel everything is in good shape, enable the DYNAMIC variable and
recompile the project from scratch. This will cause your userland libraries to be
dynamically linked, which puts much more stress on your VM (especially mmap()

code). This essentially adds another layer of indirection between the executable
being run and the library calls it’s attempting to run, where ld-weenix can link
the library calls that are used into the original binary at runtime. Unfortunately,
this also makes it even more difficult to debug what the user process is doing;
if you are interested in setting breakpoints in the user process with dynamic
linking, check out the debugging appendix for more information.

Turning dynamic linking on will make the above tests even more thorough.
For instance, the test using forkbomb and eatmem simultaneously is notoriously
hard to get right in the presence of dynamic linking - a phantom bug might
cause your pageoutd to thrash back and forth between two pages if you’re not
careful.

7.9 Conclusion

We hope you’ve enjoyed working on Weenix and that you learned a lot. Good
luck finishing your project, and don’t forget to read the debugging appendix if
you run into problems or need more ideas about where to look!
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Appendix A

Extra Assignments

The features listed on this page are not extra credit. There is no extra
credit in Weenix. Your grade is based on how well you complete the core
Weenix requirements. Therefore trying to implement these things can only hurt
your grade and distract you from what is really important in life. The only
thing to be gained by foolishly ignoring this warning is a deeper understanding
of Weenix and bragging rights. We will look unfavorably on someone
who has implemented some of these, but has problems with the core
Weenix projects.

Some items on this page include descriptions on when it is feasible to im-
plement them, be aware however that you should always keep around a copy of
your work which does not contain your work on extra features in case you break
something. Having a broken Weenix because you tried to implement
one of these features is not acceptable. This is particularly important to
remember because you might implement a feature between VFS and S5FS only
to find later when working on VM that you broke something badly.

Also note that the course staff will only be able to provide limited help with
these features. Some of the features have been implemented in the staff version
of the code, others have been attempted and abandoned, still others are random
whims which may or may not be impossible.

A.1 Realistic projects

If you ignored the warning above then this is the place to start. These are
features which are known to be possible because someone has either done so or
it has been planned. This means you will get some description here on how to
implement it and there might even be helpful code already in Weenix.
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A.1.1 Multithreaded processes

This task has a bunch of places in code that are marked by the MTP symbol
(which must be enabled by setting “MTP = 1” in Config.mk), and the kernel is
designed around it anyway. This is a relatively straightforward addition to the
kernel.

A.1.2 Current working directory

This will add a system call which looks up the full path name of the cur-
rent working directory of the current process and is marked in the codebase
with the symbol GETCWD , which can be enabled by setting “GETCWD = 1” in
Config.mk. This should not be too difficult at all.

A.1.3 File system mounting

One important missing feature in our VFS implementation is mount points.
We have a root file system (ramfs if you are working on VFS, s5fs if you are
working on S5FS), but normal UNIX allows you to access multiple file systems
by “mounting” additional file systems on directories in your virtual file system
layer.

For more information on mount points we refer you to the mount(2) man
pages, the umount(2) man pages, the lecture slides, and the text book.

Before you begin, there is already a significant amount of code in Weenix for
this feature; however, by default it is not compiled. To compile this code change
the line “MOUNTING = 0” in Config.mk to “MOUNTING = 1”. Also, remember to
run:

$ make clean

You should use cscope to search for all instances of the C symbol MOUNTING

in Weenix to see exactly what has changed to allow mounting to happen. Notice
that struct fs in fs/vfs.h now has a new field called vn mount.

The biggest change caused by changing the MOUNTING flag is the behavior
of vget() (even though very little code changed, the behavior is completely
different). The easiest way to think of the behavior of the new vget() is like
this:

vnode_t* new_vget(args) {

vnote_t* vn = old_vget(args);

if (!error) {

return vn->vn_mount;

} else {

return error;

}

}
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The purpose of this change is to make the integration of mounting as seamless
as possible. Normally vn->vn mount == vn and therefore most of the time this
new behavior is identical to the old one; however, simply by setting the vn mount

field the vget() function automatically traverses into mounted file systems for
us. The only cases we need to worry about are when we are leaving a mounted
file system (e.g. following a .. path from the root of a mounted file system).

The easier part of implementing mounting is filling in some functions which
have been left blank (but fully commented!) for you. In fs/vfs.c this is:

int vfs_mount(struct vnode *mtpt, fs_t *fs);

int vfs_umount(fs_t *fs);

in fs/vfs syscall.c there is also:

int do_mount(const char *source, const char *target,

const char *type);

int do_umount(const char *target);

You will also want to read the Hackers Guide section about reference count-
ing for information about special conventions used when reference counting
mount point vnode ts.

Now comes the hard part: implementing these functions is not enough. As
was noted in the previous section, setting up the vn mount field will allow us
to enter mounted file systems. However following .. paths out of mounted file
systems still needs to be special cased. You will need to think about the code
you wrote for VFS and which code will need to be different in order to handle
mounting correctly. The amount of code you will need to write is small, but
you need to find the right functions to write it. All of the code should go into
functions which you wrote for VFS. You do not need to modify functions which
you wrote for other projects or functions which you did not write originally.
Also remember some of the system calls have errors specific to mounting which
you might not have worried about before (e.g. What happens when you try to
link a file from one file system onto another? Why is this an error?).

A.1.4 Userspace preemption

Definitely possible. The basic idea is that a timer interrupt is scheduled to
occur every several milliseconds. The interrupt context then looks at the thread
which was interrupted. If the thread was in userspace it is safe to just put that
thread on the run queue and switch into the context of another thread (thus
preempting the userland process). If the interrupted thread was in the kernel,
we do not want to arbitrarily preempt it (preemptible kernels lead to kernel
hacker hell). Instead, we set a flag on the thread to mark it as preempted and
allow it to continue. When a thread returns from kernel land into user land the
flag should get checked and if it is set the preemption should happen at that
point. Make sure you understand all of this before you start or things will get
messy.
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So, do you gain anything from doing this? Actually, the effects are very
visible and very satisfying. You will be able to run vfstest and cat hamlet

at the same time and they will all look like they are running at the same time
(assuming you set a good preemption time) while your fellow students will have
very visible times when one operation stops working while the other is running.
Also, your Weenix will not hang while you cat /dev/zero to /dev/null.

To get started on this enable the compile time flag and check out the code
in kernel/util/time.c. It sets up the timer interrupts but you have to fill in
what to do once they happen.

A.1.5 Pipes and synchronous multiplexing

One thing that greatly increases the power of shells and other programs is pipes,
because they all for simple inter-process communication. This is not difficult
to add to the standard Weenix, and some support code has been included to
help you. Enable the pipe subsystem by setting PIPES = 1 in Config.mk and
look in fs/pipe.c to get started. Make sure you understand how the pipe(2)

system call works. It has the following signature:

int do_pipe(int pipefd[2]);

If successful, this call will fill the supplied pipefd array with a file descriptor
representing the end of the pipe for reading, and then a file descriptor repre-
senting the end of the pipe used for writing.

Once you are done with that, you have a use case for synchronous I/O multi-
plexing, which is where a program can wait for any of multiple file descriptors to
become ready. This is typically implemented using the select(2) and poll(2)

system calls. Look those up for more information, but the basic premise is that
you want to check if any of the file descriptors the user put in are ready for
whatever operation they requested, and if they are not, have some way to sleep
until one or more of them is ready.

These syscalls are filesystem-oriented and rely on some extensions to vnode

operations that you won’t have to touch for normal Weenix. For example,
because pipes have to know when all of the readers of a pipe have closed their
file descriptors, the pipe must keep an accurate count of how many files have it
open for reading and writing. This requires new vnode operations that also take
the file which is getting a reference (called acquire) or putting a reference
(called release) to the vnode. Requesting events from vnodes for multiplexing
will require an operation typically called poll, which checks whether reading or
writing will block, among other things.

A.1.6 Asynchronous disk driver

It would be cool to support an asynchronous disk driver. To do this would
require a decent amount of restructuring in the driver code, but is doable given a
bit of time and effort. After this is done, you could potentially add asynchronous
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user I/O support as well (although this is a harder problem because in most
Unix distributions the notification of a completion is done through signals).

A.1.7 Better scheduling

After you have finished implementing processes and threads, you should know
the basics, but it might be a bad idea to try making too many big changes to
Weenix before you have really gotten exposed to everything.

The current Weenix scheduler is rather primitive as it has no sense of priori-
ties and makes no attempt to do any “clever” scheduling; it is purely first come
first serve. Here are some helpful suggestions:

• Professor Doeppner’s lecture (only available to Brown students) on schedul-
ing contains plenty of information on different scheduling algorithms (you
might also check the textbook).

• The CS167 students implement a slightly more advanced scheduler for
their threading library assignment. You might be able to get some inspi-
ration from that handout or the support code.

• If you decide to pursue user space preemption you might be able to tie
it in nicely with a more advanced scheduler (e.g. threads which have
been running for a long time and keep getting preempted should get a
lower priority than threads which have just recently woken up after being
asleep. As described in the lectures on scheduling, this can help because
the long running programs tend to be background processes, while things
which have just woken up are probably user processes which just received
input).

Most of these have not been implemented yet, but a simplistic O(1) scheduler
has been implemented in the past with interesting results. The downside is that
it will probably not have very visible effects, but you might be able to think of
a good way to show off its effects that we have not.

A.2 Possible long-term projects

If you are done with Weenix and you really loved it, you might want to consider
a larger addition to Weenix to enrich your own knowledge of how operating
systems work. These projects are almost certainly not possible to implement in
the same semester you are working on Weenix if you are taking it as part of a
class, but they represent interesting areas of potential further study.

A.2.1 Multi-core/processor support

There are a few issues which make the jump to multi-processor land somewhat
painful. One is that the boot process must be overhauled almost completely
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to compensate for the extra processors. You must learn about the boot pro-
cess in the x86 architecture – this will require intimate knowledge of ACPI,
inter-processor interrupts, the interaction between CPUs, I/O APICs and Lo-
cal APICs, and some knowledge of real-mode 16-bit x86 assembly. Setting up
page tables correctly becomes more difficult as well. You will also have to learn
about the global descriptor table (GDT) and the task state segment (TSS). (Be
warned that once you are done with this step, you will probably hate Intel for
the rest of your life, and also know the x86 architectyure better than anyone
you know.)

Once you get the other processors to boot, get into protected mode with
paging enabled, and then make the jump into the kernel binary, you will have
to get your processors to do something more interesting than spin. This will
require a better scheduler, because the usual mechanism for getting work off
your boot-strap processor and onto your other processors is to have the idle
processors steal it. Work-stealing can be done simply, but the best schemes are
rather complicated.

In addition, you will now have to worry about the SMP-safety of your kernel.
Weenix is certainly not SMP-safe by design, and a lot of portions of the kernel
make assumptions that are fine when they are the only thread running but which
quickly deteriorate in the multiprocessor world. A library of synchronization
primitives will be needed. The simplest way to make the kernel SMP-safe is
to use a Big Kernel Lock, which was done back in old versions of Solaris and
Linux. While this is a decent starting point, this will lose most of the benefit of
implementing a multi-processor system, as you will only get any real parallelism
as long as the programs are running in userland.

If you really want to implement this, talk to Eric Caruso or Jackson Owens.
This is probably best done along with multi-threaded processes and userland
preemption, as well.

A.2.2 Users

The interesting part about this extension is not necessarily the implementation
of users themselves, but the security model that you will have to implement
for it to be meaningful. You’ll have to write a new file system which has some
form of access control. In standard Unix, this is based on users and groups,
but in Windows, something more like ACLs are used instead. You may want to
experiment with capabilities-based forms of security if you want a more novel
project.

A.2.3 Signals

Signals are cool, but they get pretty ugly pretty fast when you start doing stack
manipulations in assembly. As long as you have a fairly strong idea of x86 stack
discipline, it will be more messy than difficult.
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A.3 “Abandon all hope, ye who enter here”

If you ignored the Dante quote above then this is the place to start. These
are the features that we know are either very difficult or completely impossible.
However, we would hate to stop a truly foolish individual from banging their
head against the keyboard until one of these features pops out.

A.3.1 Networking stack

If you’ve taken a networking class where you implemented TCP/IP, you could
try this one out. However, before you start, don’t forget to write an Ethernet
driver from scratch. Once you’re done, demonstrate by porting Apache or nginx
to Weenix.

A.3.2 X window system

Depends on signals, graphical display driver with higher resolution than 80×25,
mouse driver, etc. You’ll also need a pseudo-terminal subsystem, which will be
a huge pain.

A.3.3 64-bit support

This isn’t even useful because the Weenix kernel has no way of allowing a process
to address more than 1GB of memory as it is. (Think about how paging works
and you will figure out why.)If you want it to be able to support large amounts
of memory, be prepared to rewrite all of the paging code, all of the assembly,
and probably a lot of other random stuff.

A.3.4 Kernel preemption

Would require totally redesigning the Weenix kernel to make it threadsafe. If
this seems reasonable, you are misunderstanding something. Userspace pre-
emption is similar and doesn’t require a full rewrite of Weenix. Also note that
most production kernels don’t even support this (because even after you get it
working, it’s an absolute nightmare to maintain, and it typically adds very little
value).
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Appendix B

Tools for Working in a
Large Codebase

B.1 Version Control with git

Git is a fantastic tool for version control. There are many tutorials available
online that give a good introduction to Git, but one of the most highly recom-
mended is on the Git website itself. If you prefer to work by example, try the
Git immersion tutorial.

B.2 Taking notes

At risk of seeming low-tech, using code tags such as TODO, XXX, and FIXME with
helpful notes about what you were thinking when you noticed something was
broken or unfinished will be incredibly useful. This also allows you to search for
remaining tasks by using grep (or, if you’re using Git) git grep.

Even simpler than that, taking notes about the code you’re developing or
drawing call trees to visualize the expected call stacks can be incredibly helpful
for learning your way around a new codebase.

B.3 Text Editors and IDEs

Because the fights between text editors are near-religious in severity, we won’t
recommend a particular code editor here, but we do recommend that you find
a “serious” text editor with some built-in niceness to work in while you code.
These include everything from Vim and Emacs (which typically run at the
command line and can run commands without leaving the editor) to Eclipse
(which does about a thousand things in addition to being a code editor). Some
of the nice things that you’ve probably learned to love about IDEs can be
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approximated quite well in more stripped-down environments as well if you use
cscope to index your project.

B.3.1 Integration with cscope

Basically every major text editor has a cscope extension or bundle which allows
you to do forward (“Where is this function defined?”) and reverse (“Where is
this function called?”) searches, automatic text completion for function and
variable names, etc. If you choose to use a text editor without these functions
built-in, we highly recommend using cscope to make your job easier. Note that
there is a cscope build target which will automatically update the cscope index
every time you recompile (or you can also re-run it manually), so you just need
to set up your editor to use the generated index file.

B.4 Debugging with gdb

If you have never used a debugger before, we highly recommend you learn to
use one, either through a graphical interface like the one in many IDEs, or from
the command line. This will be a development tool you will not want to live
without once you learn to use it.

gdb is the most widely used debugger for C code, with support for kernel
development using many virtual machines. There are many wonderful reasons to
use gdb to debug Weenix in particular, so please read the appendix on debugging
for more information.



Appendix C

Debugging

As you begin to develop your kernel, you will undoubtedly find problems in
the code you have written. We have collected some techniques here which we
found useful or which are largely undocumented elsewhere because they are
fairly advanced or are specific to working on Weenix in particular.

C.1 Beginning Debugging

These are the simplest debugging techniques, which can be used at any stage
of the project. They require the least amount of learning, but they also are not
nearly as powerful as the debugging techniques listed later on.

C.1.1 Printing

By far the easiest technique for debugging is printing things out during the exe-
cution of your program. Of course, printing inside the kernel requires significant
overhead (as you will learn when you write the TTY driver). Luckily, inside
the support code we have provided printing methods which use the serial port
of the virtual machine to print to a terminal outside of the computer. You can
think of this as being like a printer connected to the serial port if you wish. The
way to use this is through the dbg or dbgq macro.

#define dbg(dbgmodes, printfargs)

#define dbgq(dbgmodes, printfargs)

The difference between the two is that dbg additionally displays the file and line
number information describing where the debug statement is located, but dbgq
displays only the debugging message.

Debug messages are organized into many debug modes, each of which can
be separately hidden or color-coded in the debug output. You can find a list
of debug modes in kernel/include/util/debug.h. The string names next to
each mode are used to configure which debug modes are displayed (the default
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can be set in the Weenix configuration file and updated while Weenix is being
debugged via the dbg command), and there is also a special string name which
refers to all debug modes. For example:

dbg(DBG_THR, "Creating a kernel thread "

"with stack at 0x%p\n", stack);

In the snippet above, DBG THR is the mode macro for the threading subsystem.
This debug message would print something like:

kthread.c:123 kthread_stack_create(): Creating a kernel thread

with stack at 0x804800

It is also possible to define a debugging message which is part of multiple modes
by taking their bitwise or.

dbg(DBG_THR | DBG_VM, "Creating a kernel thread with stack at "

"0x%p\n", stack);

It’s not hard to add your own debugging modes, either. This is helpful if you
decide to implement extra features and would like an easy way to separate their
debug output from the normal subsystems without turning all of the debug
modes off.

C.1.2 Printing Using Info Functions

There are several info functions in the kernel which are provided exclusively
for visualizing information in the debug console. To call one of these, use
dbginfo(), like so:

dbginfo(DBG_VMMAP, vmmap_mapping_info, curproc->p_vmmap);

You can substitute in other functions besides vmmap mapping info - there are
a bunch of functions ending with “ info” in Weenix which can be passed here.

C.1.3 Using Assertions

Another simple but widely-applicable approach is to intentionally crash your
program when some condition is not met, which is known as “asserting” that
condition’s truth. This allows you to know what the failure point was, which is
sometimes helpful for figuring out what caused the failure in the first place, but
mostly it’s helpful just for letting you know that there was a failure instead of
failing silently.

We provide assert functionality with the KASSERT() macro, which tests the
condition you pass it and prints out an error message on crash that tells you
the condition that failed and where in the codebase the KASSERT() was. A trick
you may find helpful is that any string will be evaluated to true in C (because
it’s just a pointer) so you can do things like this:
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KASSERT(a == 1 && "A should be equal to 1");

This may be more helpful than not using a string, since the message will be
printed when the assertion fails. Of course, you can also just put a comment
next to the assertion in the code.

Because assertions are helpful for checking things that should always be true,
we recommend placing them at the beginning of any function whose arguments
must be of a certain form to ensure that the caller is checking and filtering all
error cases correctly (this is especially helpful for syscalls). Don’t confuse this
with error-checking that you need to do, though – if you use assertions to check
for error conditions you are supposed to handle, you will needlessly cause your
kernel to panic!

C.2 Intermediate Debugging

Although the techniques above are very useful, it will quickly become apparent
that a more robust way to debug the kernel is frequently necessary. Luckily,
debuggers provide us with an excellent way to do this. gdb is the definitive
debugger for C code on Unix systems, and the rest of this appendix will center
on its usage. Most of the following information is applicable to all stages of
Weenix development, except where noted.

C.2.1 Prerequisites

If you have never used gdb before, we recommend finding RMS’s (Richard Stall-
man’s) gdb Debugger Tutorial online and reading it. Before you read more ad-
vanced or Weenix-specific debugging tips, make sure you can use the following
gdb features (most important ones listed first, more specialized ones later).

• Compiling with symbols.

• Breakpoints, stepping, continuing.

• Viewing and traversing the call stack.

• Inspecting variables.

• Inspecting the contents at a particular memory address.

• Using watchpoints.1

• Conditional breakpoints.2

• Inspecting the contents of registers.

1Watchpoints do not work with all the simulators which Weenix will run on.
2Conditional breakpoints do not work with all simulators which Weenix will run on. To

get similar functionality, add an if statement to your code with the condition you care about
and set a breakpoint inside there.

http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html
http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html
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Once you understand these basics, you should be able to debug pretty much
any simple user-level program that you have the code for. However, there are a
few more specific topics that are helpful in some cases.

C.2.2 Debugging Multiple Threads

Although this does not relate directly to Weenix, you will frequently be debug-
ging multithreaded programs. Debugging in the presence of multiple threads is
usually the same as debugging single-threaded programs, but the place where
it differs is in cases like deadlock. If you are debugging a program in gdb and
it deadlocks, you can hit Ctrl-C to pause the program. Then, you can inspect
the stack trace as usual. If you need to check the other threads (perhaps the
first one you were given wasn’t the one in a deadlock, or maybe you want to
see what other threads are contributing to the deadlock) you can see a list of
threads using “info threads” and can switch to thread N by typing “thread
N” (substitute the real thread number for N in that command).

Another note about multiple threads (particularly if you might be canceling
them) is that you must be careful what calls you make during critical sections
of code. For instance, if you want to ensure that a call to cancel some thread
doesn’t take effect until after a certain section of code is complete, there is
a set of standard library calls which make system calls which might act as a
cancellation point. Look in the man page for pthread cancel() for a list of
these library calls. Note that printf() is one of them, so you might want to
use gdb to debug instead of printing out messages to tell you when certain events
happen.

C.2.3 Using the Weenix gdb Scripts

Because Weenix has been debugged using gdb for some time, there are a few
Python scripts which run as custom commands inside the debugger which
you can use to help debug your OS. These are all given under the command
“kernel”, and you can find more detailed information about the commands
available by running “help kernel” inside of gdb, but here are a few of the
highlights.

• To turn kernel memory checking on, add the line “set kernel memcheck

on” to the beginning of init.gdb. This allows you to run kernel page

and kernel slab at shutdown, which tell you how much memory has not
been cleaned up. Note that turning memory checking on may slow Weenix
down a little bit, and that a handful of memory segments simply cannot
be freed (page tables and stacks are common culprits).

• You can access the debug info functions mentioned above through the
kernel info command.

• kernel list will tell you all the elements of a linked list if you used the
macro list implementation.
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• kernel proc will give you a list of all live processes.

Note that these require a certain version of the Python language and gdb to run;
an error will be printed at the beginning of your gdb sessions if your versions
are not compatible.

C.2.4 Disassembling a Program

If you need to know what exact instructions are being run or where exactly in
your code you are executing, you should probably disassemble your program.
The easiest way to do this inside gdb is to use the disas command, although
you can also use a command like x/100i $eip to print the next 100 instructions
starting at the address pointed to by your instruction pointer. You can also use
the objdump tool (separate from gdb) to disassemble the entire contents of an
executable.

C.2.5 Using the QEMU monitor

Running the command weenix -d qemu will launch the QEMU monitor. From
here, you have direct access to more system level information than you would in
gdb. Notably, the xp command will let you examine physical addresses, much
like how x will still allow you to examine virtual addresses. This can be useful
in VM debugging to ensure the contents of a physical address are what they
should be. Running the help command produces a full list of commands.

C.3 Advanced Debugging Techniques

Finally, there are some times when the approaches above are just not enough.
These tips are for Weenix in particular, although they can easily be adapted
for use in debugging many other kernels as well. These techniques will only be
relevant when working on the virtual memory system of Weenix, since they are
mainly for debugging problems in userland processes.

C.3.1 Debugging a Page Fault

The most obvious thing to do when debugging a page fault is to look at the
address the fault is happening on. However, this doesn’t tell you the context
under which the page fault was generated, such as the stack or the section of
code that was running. To find these, the easiest way is to inspect the stored
context of the process that generated the pagefault. This will allow you to see
the address of the instruction which was running (and perhaps more importantly,
the name of its containing function), the stack pointer, and any other registers
which might be needed to figure out what the processor was doing. This trick
comes in especially handy when you also load in the symbol file for the user-level
process, as the next section will show.
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C.3.2 Debugging processes from the kernel debugger

It is a little bit like black magic, but you can actually debug user processes from
inside the kernel debugger if you load in the symbol file for the user process into
the correct location in memory. To find this information, you can use objdump

(in your ordinary shell) to get some information about the user process.

$ objdump --headers --section=".text" user/simple/hello

user/simple/hello: file format elf32-i386

Sections:

Idx Name Size VMA LMA File off Algn

6 .text 00000064 08048208 08048208 00000208 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

The relevant information that this gives us is the starting address of the text
section, 0x08048208 (the VMA column). So, we can open up Weenix with gdb

attached, and add in the relevant symbol file for our userland process.

Breakpoint 3, bootstrap (arg1=0, arg2=0x0) at main/kmain.c:121

121 {

(gdb) add-symbol-file user/simple/hello 0x08048208

add symbol table from file "user/simple/hello" at

.text_addr = 0x8048208

(y or n) y

Reading symbols from user/simple/hello...done.

(gdb) b main

Breakpoint 4 at 0x8048208: file ./hello.c, line 12.

(gdb) c

Continuing.

...

Breakpoint 4, main (argc=1, argv=0x8047eec) at ./hello.c:12

12 {

(gdb) list

7

8 #include <unistd.h>

9 #include <fcntl.h>

10

11 int main(int argc, char **argv)

12 {

13 open("/dev/tty0", O_RDONLY, 0);

14 open("/dev/tty0", O_WRONLY, 0);

15

16 write(1, "Hello, world!\n", 14);

Now, you should be able to set breakpoints in the userland process.
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It is worth noting, however, that this does not prevent you from also putting
breakpoints in kernel code. gdb is intentionally dumb about how breakpoints
work - whenever your instruction pointer reaches the specified address, gdb will
pause, no matter what symbol files you’ve added - so since the text of your
kernel and the user process are both loaded, you can place breakpoints in either
one.

C.3.3 gdb and DYNAMIC

With dynamic linking enabled, it becomes a step more difficult to debug userland
processes from the kernel debugger, but certainly not impossible. The main issue
is that there is a bunch more code in the ld-weenix shared library that you
won’t be able to debug unless you tell gdb to load the symbol file. The best way
we know of to do this is to print out the memory map of the process you’re trying
to debug and make an educated guess about which region might correspond to
ld-weenix. (It should be a shared region with execute permissions.) Then,
load the debugging symbols starting at the address which corresponds to the
beginning of that region.
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