Domain Name System

CS 166: Introduction to Computer Systems Security
The domain name system (DNS) is an application-layer protocol.

Basic function of DNS:
- Map domain names to IP addresses.
- The mapping is many to many.

Examples:
- `www.cs.brown.edu` and `cs.brown.edu` map to 128.148.32.12.
- `google.com` maps to 198.7.237.251, 198.7.237.249, and other addresses.

More generally, DNS is a distributed database that stores resource records:
- **Address (A) record**: IP address associated with a host name.
- **Mail exchange (MX) record**: mail server of a domain.
- **Name server (NS) record**: authoritative server for a domain.
Domains

• Domain name
 • Two or more labels, separated by dots (e.g., cs.brown.edu)

• Top-level domain (TLD)
 • Generic (gTLD), e.g., .com, .org, .net
 • Country-code (ccTLD), e.g., .ca, .it

• ICANN
 • Internet Corporation for Assigned Names and Numbers
 • Nonprofit

• ICANN
 • Keeps database of registered gTLDs (InterNIC)
 • Accredits registrars for gTLDs

• gTLDs
 • Managed by ICANN

• ccTLDs
 • Managed by government organizations
DNS Tree

- A google.com 66.249.91.104
- A xxx.google.com ###########

- A stanford.edu 171.67.216.18
- A xxx.stanford.edu 171.67.###.###

- A brown.edu 128.148.128.180
- A xxx.brown.edu 128.148.###.###

- A microsoft.com 207.46.232.182
- A xxx.microsoft.com ###########

- A cs.brown.edu
- A math.brown.edu

resource records
Name Servers

- **Name server**
 - Keeps local database of DNS records
 - Answers DNS queries
 - Can ask other name servers if record not in local database
- **Authoritative name server**
 - Stores reference version of DNS records for a zone (partial tree)

- **Examples**
 - `dns.cs.brown.edu` is authoritative for `cs.brown.edu`
 - `bru-ns2.brown.edu` is authoritative for `brown.edu`, except `cs.brown.edu`

- **Root servers**
 - Authoritative for the root zone (TLDs)
 - `[a-m].root-servers.net`
 - Supervised by ICANN
Name Resolution

- **Resolver**
 - Program that retrieves DNS records
 - E.g., `dig` in Linux and `nslookup` in Windows
 - Caches records received
 - Connects to a name server (default, root, or given)

- **Iterative resolution**
 - Name server refers client to authoritative server (e.g., a TLD server) via an NS record
 - Repeat

- **Recursive resolution**
 - Name server queries another server and forwards the final answer (e.g., A record) to client
Iterative Name Resolution

- **Local Machine**
 - Application
 - Resolver

- **Resolver**
 - (root) NS f.root-servers.net
 - com NS d.gtld-servers.net
 - google.com NS ns2.google.com
 - www.google.com A 74.125.226.116

- **Query**
 - www.google.com
Recursive Name Resolution

- **local machine**
 - Application
 - Resolver
- **google.com server**
 - Resolver
 - google.com query
 - answer
 - A 74.125.226.176
- **other name server**
 - Resolver
 - other name query
 - answer
 - A 74.125.226.176
Glue Records

- Circular references
 - The authoritative name server for a domain may be within the same domain
 - E.g., dns.cs.brown.edu is authoritative for cs.brown.edu

- Glue record
 - Record of type A (IP address) for a name server referred to NS record
 - Essential to break circular references

- Example
 - brown.edu. NS bru-ns1.brown.edu.
 - bru-ns1.brown.edu. A 128.148.248.11 [glue record]
DNS Caching

• There would be too much network traffic if a path in the DNS tree would be traversed for each query
 – Root servers and TLD servers would be rapidly overloaded

• DNS servers **cache** records that are results of queries for a specified amount of time
 – Time-to-live field

• **DNS queries with caching**
 – First, resolver looks in cache for A record of query domain
 – Next, resolver looks in cache for NS record of longest suffix of query domain
Iterative Name Resolution with Caching

query
www.google.com

Local Machine
Application
Resolver

DNS Cache
com NS d.gtld-servers.net ...

google.com NS ns2.google.com

Resolver
f.root-servers.net

Resolver
d.gtld-servers.net

Resolver
ns2.google.com

Resolver
www.google.com

Resolver
local name server

Local Machine

www.google.com A 74.125.226.116

DNS

4/9/18 DNS 11

4/9/18
Recursive Name Resolution with Caching

local machine

Application Resolver

local name server

Resolver

DNS Cache
google.com A
74.125.226.176

other name server

Resolver

DNS

google.com A
74.125.226.176

...
Local DNS Cache

• Operating system maintains DNS cache
 – Shared among all running applications
 – Can be displayed all users
 – View DNS cache in Windows with command `ipconfig /displaydns`
 – Clear DNS cache in Windows with command `ipconfig /flushdns`

• Privacy issues
 • Browsing by other users can be monitored
 • Note that private/incognito browsing does not clear DNS cache
DNS Cache Poisoning

• Basic idea
 • Give a DNS server a false address record and get it cached

• DNS query mechanism
 • Queries issued over UDP on port 53
 • 16-bit request identifier in payload to match answers with queries
 • No authentication

• Cache may be poisoned when a resolver
 • Disregards identifiers
 • Has predictable identifiers and return ports
 • Accepts unsolicited DNS records

• Early versions of BIND (popular DNS software) vulnerable to cache poisoning
DNS Cache Poisoning Defenses

- Query randomization
 - Random request identifier (16 bits)
 - Random return port (16 bits)
- Probability of guessing request ID or return port
 \[\frac{1}{2^{16}} = 0.0015\% \]
- Probability of guessing request ID and return port is
 \[\frac{1}{2^{32}} \text{ (less than one in four billion)} \]
- Check request identifier
- Use signed records
 - DNSSEC
Kaminsky’s Attack

- Attacker causes victim to send
 - Many DNS requests for nonexistent subdomains of target domain
- Attacker sends victim
 - Forged NS responses for the requests
- Format of forged response
 - Random ID
 - Correct NS record
 - Spoofed glue record pointing to the attacker’s name server IP

Requests
- 000.brown.edu
- 001.brown.edu
- ...
- 999.brown.edu

Spoofed responses
- 000.brown.edu
- NS ns2.brown.edu
- ns2.brown.edu
- A 66.66.66.66
- ...

4/9/18
DNSSEC

- **Goals**
 - Authenticity of DNS answer origin
 - Integrity of reply
 - Authenticity of denial of existence

- **Implementation**
 - Signed DNS replies at each step
 - Public-key cryptography
 - Certificates in the OS

- **Slow deployment**
 - Root servers support since 2010
What We Have Learned

• How DNS operates
 • Distributed database
 • Resolvers and name servers
 • Iterative vs. recursive resolution
 • Caching
• DNS cache poisoning attacks